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ABSTRACT 

This research consists of two parts: (1) robust steady-state tracking of sampled-data 

systems and (2) robust aircraft pitch control. 

In Part I, robust steady-state tracking of linear shift-invariant and periodic discrete-

time systems in the presence of structured norm-bounded discrete-time uncertainty is 

discussed first. Using the results for discrete-time systems, robust steady-state track­

ing of sampled-data systems, which are considered as continuous-time systems, in the 

presence of structured norm-bounded continuous-time uncertainty is addressed. E.xact 

conditions are derived for robust steady-state tracking of known inputs for sampled-data 

systems by using the lifting technique. Sampled-data systems are approximated by fast 

sampling of the input and output. The resulting systems are in discrete time. Based 

on the analysis of the resulting approximate discrete-time •'ystems, an approximate con­

verging computation algorithm is given. The same results also apply to general periodic 

linear time-varying continuous-time systems. 

In Part II. robust aircraft pitch control is presented. The discussion focuses on the 

longitudinal attitude control problem when aircraft weight and center of gravity are 

unavailable as control inputs. Due to the variation of weight and center of gravity in 

aircraft models, multiplicative uncertainty models for different flight conditions (three 

different altitudes/airspeeds) are derived for robust synthesis. Longitudinal attitude 

robust controllers are designed to provide consistent performance under varying weight 

and varying center of gravity locations. 
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CHAPTER 1 GENERAL INTRODUCTION 

Two topics will be discussed in this dissertation: (I) robust steady-state tracking of 

sampled-data systems and (2) robust aircraft pitch control. 

[n the first part, robust steady-state tracking of sampled-data systems is consid­

ered. The performance is considered in a robust manner subject to the system s robust 

stability. Robustness of sampled-data systems has received a lot of attention recently. 

.A. sampled-data control system consists of a continuous-time plant to be controlled, 

a discrete-time controller, and ideal continuous-to-discrete and discrete-to-continuous 

transformers. Instances of sampled-data systems can be found in numerous control ap­

plications. Sampled-data systems are difficult to analyze because in continuous time 

they are time varying, or more precisely they are periodic, even when the plant and 

controller are both time invariant. Therefore the lifting technic[ue is used to deal with 

periodic systems. 

Robust performance of steady-state tracking to input signals is studied in our research 

of sampled-data systems. Even though zero tracking can be achieved for a nominal sys­

tem. the steady-state tracking error may no longer be zero in the presence of system 

uncertainty. Based on the results of robust stability of sampled-data systems, condi­

tions of robust tracking to known inputs in the presence of structured norm-bounded 

uncertainty will be developed in the following chapters, using some appropriately defined 

performance measures. 

Chapter 2 introduces sampled-data systems and the robust steady-state tracking 

problem. Relevant research can be found in Chapter 3, the literature review. A collec­
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tion of definitioas and aotatioas is given in Chapter 4. Robust steady-state tracking for 

discrete-time systems is considered in Chapter 5. Results are derived for multi-input 

tracking of linear shift-invariant and periodic discrete-time systems, respectively. Then 

in Chapter 6. exact conditions of robust steady-state tracking of sampled-data systems 

are obtained. Chapter 7 discusses a convergent computation algorithm by an approxima­

tion method when sampled-data systems are related to the approximated discrete-time 

systems; a simulation example is shown. Conclusions can be found in Chapter 8. 

In the second part, we will address the robust controller design for the longitudinal 

altitude control of aircraft. This research focuses on the longitudinal altitude control 

of aircraft with variations in weight and center of gravity throughout the flight regime. 

The objective is to develop a robust control algorithm that provides consistent aircraft 

performance in the duration of flight. 

Chapter 9 introduces the Hoo design for aircraft. .Aircraft dynamics and performance 

criteria are given in Chapter 10. The aircraft model is given as a state-space model with 

variations in weight and center of gravity. Before the robust controller is designed, 

nominal models are investigated in Chapter II. Two controller design set-ups are given; 

model matching and desired model as prefilter. Nominal controllers are designed using 

those two set-ups. Based on knowledge of the nominal design, a robust controller is 

synthesized using the prefilter approach in Chapter 12. 



www.manaraa.com

3 

PART I 

ROBUST STEADY-STATE TRACKING OF 

SAMPLED-DATA SYSTEMS 
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CHAPTER 2 INTRODUCTION 

Traditionally, the design of effective controllers for real systems requires accurate 

mathematical models of the physical systems. The design is based on the specific models 

of interest. However, the exact physical models cannot be obtained, only the approxi­

mated ones. On the other hand, the more accurate the models, the more complicated the 

design and analysis procedure is for the controllers. Therefore, simple but less accurate 

appro.ximate systems should be studied. Besides the approximation of real systems, we 

cannot avoid the existence of uncertainty around the nominal systems. The uncertainty 

drives the real systems from the nominal models. Perturbations from outside will affect 

system performance as well. In general, a well-designed controller that achieves stability 

and performance for the nominal system may fail to achieve the designed objectives for 

the real system and may even make the closed-loop system unstable. For these reasons, 

robust control is introduced to deal with model uncertainty and perturbation. 

Since digital techniques provide many benefits, modern control systems usually em­

ploy them for controllers. The fact that most new industrial controllers are digital pro­

vides strong motivation for studying digital control systems. Essentially, there are three 

approaches to the synthesis of digital controllers. (1) .A.n analog controller is designed 

for the continuous-time plant and then is implemented as a discrete-time controller ob­

tained by discretization. .A-nalog specifications can be recovered as the sampling period 

of the discretization goes to 0. (2) We can also discretize the continuous-time plant and 

obtain an approximate discrete-time system. A discrete-time controller is designed for 

the resulting discrete-time system, and then this designed discrete-time controller is im­
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plemented to control the original plant. The designed controller depends on the choice 

of sampling period. Both of these approaches ignore the system's behavior between the 

sampling instants and may result in designs that do not meet the specificatioas. (3) 

We can design controllers directly for sampled-data systems. This direct approach to 

studying sampled-data systems requires considering them as periodic continuous-time 

systems. Thus, this approach is harder than the previous two approaches because sys­

tems are time varying, but it will solve the problem with no approximation. 

sampled-data system arises when a discrete-time feedback controller. K^. is intro­

duced to control a continuous-time plant, G, through the connection by the sampler. «5t. 

and the hold device, T-Lt- and Kt are synchronized (see Figure 2.1). The sampler St 

periodically samples and converts continuous-time signals into discrete-time signals. On 

the other hand, the hold operator Ht converts discrete-time signals into continuous-time 

signals by holding them constant over the sampling period. Sampled-data systems oper­

ate in continuous time, but some continuous-time signals are sampled at certain instants, 

producing discrete-time signals. Thus, sampled-data systems are hybrid systems, involv­

ing both continuous-time and discrete-time signals in a continuous-time framework. .A. 

sampled-data system with this configuration, considered as a system in continuous time, 

is not time invariant even when the plant and the controller both are linear time in­

variant (LTI). In fact, this system is periodic with the same period T as the sampler 

r e 

G 

Figure 2.1 A sampled-data system 
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and hold device. A conventional approach to the sampled-data system problem is to use 

the isomorphic lifting technique, converting the periodic linear time-varying system to 

a linear time-invariant one. 

Consequently, robust stability and performance to model uncertainty and perturba­

tion is a consideration in sampled-data system analysis (see Figure 2.2). Some results 

have been developed for robust stability and performance. On the basis of the results for 

Figure 2.2 sampled-data system with uncertainty 

robust stability, robust steady-state tracking to known inputs, an important performance 

problem, will be discussed in the following chapters, using some appropriately defined 

performance measures. By robust steady-state tracking, we mean that the system is 

robustly stable and the steady-state tracking error in a certain measure is bounded and 

less than the required value in the presence of structured norm-bounded time-varying 

uncertainty with finite memory. We can show that even if zero steady-state tracking can 

be achieved for the nominal system, the steady-state tracking error may no longer be 

zero in the presence of time-varying uncertainty in the system. In fact, it can be quite 

large. Like the design approaches we discussed above, the performance analysis of ro­

bust steady-state tracking of sampled-data systems can be conducted in different ways. 
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We will discuss sampled-data systems directly and derive exact conditions of robust 

steady-state tracking for sampled-data systems. .\s far cls computation is considered, we 

will discretize the continuous-time plant by fast sampling. Based on the performance 

analysis of the resulting approximate discrete-time system, a computation algorithm is 

given in a convergent approximation approach. 
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CHAPTER 3 LITERATURE REVIEW 

Feedback control is necessary for control systems when disturbances and uncertainty 

are considered. Robustness of control systems in the presence of disturbances and un­

certainty is an important issue in feedback control. 

3.1 Robust Stability and Performance 

Depending on the performance objectives and the nature of the signals affecting 

a given system, the robust stability and performance of the system can be addressed 

using approaches that differ according to the definitions of a number of different norms. 

These norms include the 'H2 norm, which measures the output power when the input is 

a white Gaussian stochastic process; the "Hoo norm, which is the induced operator norm 

measuring energy gain of the operator when £2 signals, or bounded energy signals, 

affect the system; or the £i/li norm, which captures the induced operator norm when 

the £co/^oo signal (bounded signal) norm is used. 

The last problem is the so-called Ci/U problem, which Vidyasagar [32] originally 

introduced in continuous-time systems when bounded persistent perturbations were pre­

sented. Dahleh and Pearson [12, 13] developed a complete solution to the £i//i optimal 

control problem of linear time-invariant systems by minimizing the Ci/li norm of closed-

loop systems. Dahleh and Ohta [11] found necessary and sufficient conditions for the 

robust stability of LTI systems with unstructured uncertainty. Khammash and Pearson 

[27, 28] derived the necessary and sufficient conditions for robust stability and per­
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formance when nominal systems are LTI with structured uncertainty. The performance 

robustness problem can be converted to a stability problem, and necessary and sufficient 

conditions can be provided in the terms of the spectral radius of certain noanegative 

matrices. 

3.2 Robust Stability and Performance of Sampled-Data Sys­

tems 

The robustness problem in sampled-data systems has received significant attention 

in the literature. In their book. Chen and Francis [10] discuss the subject and provide an 

extensive list of references. Basically, the difficulty in studying a sampled-data system 

is that it is time varying even when the plant and the controller are both time invariant. 

A general tool for dealing with sampled-data systems is the lifting technique, which was 

generalized as a framework in Bamieh and Pearson's paper [4|. These researchers estab­

lished connection between periodic continuous-time systems and linear shift-invariant 

(LSI) infinite dimensional discrete-time systems. The same technique can be found in 

[3. 6]. The resulting infinite dimensional problem was then solved by an approximation 

procedure. 

Robust stability and performance analysis are based on induced norms of the closed-

loop operators. Computation and optimization of sampled-data system norms are pop­

ular research subjects. Bamieh and Pearson [4, o] together with Dahleh [3]: Chen and 

Francis [S]: Dullerud [16] and with Francis [17]: Kabamba, and Hara [23]; Leung, Perry, 

and Francis [29]; Sivashankar, and Khargonekar [30] et al. have investigated the ?^2, the 

'Hooi and the C^o induced norms for sampled-data systems. .A. framework for studying 

nominal stability of sampled-data systems can be found in Chen and Francis [9] as well 

as Francis and Georgiou [19]. The robust stability problem of sampled-data systems 

in the presence of structured norm-bounded uncertainty was addressed by several re­
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searchers. In their paper. DuIIerud and Glover [IS] studied the £2-stable problem with 

stable structured LTI perturbation. Khammash [24] provided necessary and sufficient 

conditions for robust stability of linear time-invariant as well as linear time-varying 

systems when norm is taken to be the signal norm. Those conditions were 

given as the spectral radius of certain nonnegative matrices, which consist of induced 

norms of systems. In the same paper, it was shown that the same result can be applied 

to sampled-data systems. .A. similar result for sampled-data systems was developed in 

Sivashankar and Khargonekar [31] using a different approach. The ^2-stable problem for 

sampled-data systems was also studied there. With robust stability conditions available 

for sampled-data systems, robust performance problems such as robust tracking can be 

addressed. 

3.3 Robust Steady-State Tracking of Sampled-Data Systems 

Steady-state tracking and regulation have been addressed in the literature. Dullerud 

[16] investigated tracking step signals for sampled-data systems. Design of sampled-data 

regulators was discussed. A procedure to compute the induced norm of the closed-

loop sampled-data systems was also presented. Hara and Sung [21] discussed ripple-free 

conditions in sampled-data control systems. Chen and Francis [10] also discussed step 

tracking of sampled-data systems. When the sampled-data system is internally stable, 

as a special case, tracking to a step input reference for the corresponding discretized 

system has no steady-state inter-sample ripple. The steady-state tracking errors for 

sampled-data system and the discretized system are equal. However, this is not the case 

for general reference signals. Ripple-free tracking cannot be guaranteed when system 

uncertainty is considered, 

Khammash [25] introduced robust steady-state tracking of known inputs for discrete-

time systems in the presence of structured norm bounded uncertainty. .An appropriate 
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measure for discrete-time signals was also defined. By using this performance measure, 

necessary and sufficient conditions for robust steady-state tracking of LSI discrete-time 

systems were developed. Those conditions axe easily computable and fit well with the 

existing conditions on stability robustness. .A. multi-reference tracking case was discussed 

in [33]. 
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CHAPTER 4 DEFINITIONS AND NOTATIONS 

• denotes the set of nonnegative integers. 

•  x , [ k )  and x  denote discrete-time signals, while M and A denote discrete-time op­

erators. 

•  x { t )  and X  denote continuous-time signals, while M and A denote continuous-time 

operators. 

• /co denotes the space of sequences with the norm defined as 

||i||cc := sup |i(/:)| < oc. 
k 

• £oc denotes the space of real valued measurable functions on [0. oc) with the norm 

defined as 

Iklkoo := ess sup |a-(0| < oo. 
t  

• denotes the space of £oo[0, Tj-valued sequences x = {xfc},xfc 6 £oo[0, r]. 

The norm is defined as 

ll-^fclUoc[O.T] < OO. 

• VXl denotes the space of real valued right continuous functions on [0,oo). 
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Cg denotes the subspace of of sequences converging to zero. 

P denotes the truncation operator: 

For the discrete-time signal. P^'- loo ^oo? 

[ P K x ) { k )  := 
x { k )  k  <  K .  

0 otherwise. 

For the continuous-time signal, Pj-: C^o —> 

{ P T x ) { t ]  : =  
x [ t )  t  <  T .  

0 otherwise. 

The shift operator 5;v(or S T )  acts on /co(or signals by shifting them to the 

right by A'(or T) if .V(or T) > 0 and to the left if .V(or T) < 0. 

.A. linear shift-varying (LSV) discrete-time operator M is said to be periodic with 

period .V if M = Similarly, a linear time-varying continuous-time 

operator M  is periodic with period T  if M  =  

The kernel representation (or .V/(-.-)) of an operator M (or M) is defined 

as follows: 

For the discrete-time case. A/: Ino-

CO 

(Mi)(fc) = ̂ M(A:,/)x(/). 
1=0 

For the continuous-time case, M: C^o-

{ M x ) { t ) =  f M { t , T ) x { T ) d T .  
J Q  
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• For a LTI /^—stable operator M: its impulse response is an element of 

/t. the space of sequences {M(A:)}^o- The induced operator norm is given as 

Mill = E < =<=• 
t=0 

For a LTI stable operator M: Cnc —>• its impulse response is an element 

of £i. The induced operator norm is given as 

|iV/||i = sup f \M{ t . T ) \ d T  < oc. 
t Jo 
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CHAPTER 5 ROBUST STEADY-STATE TRACKING OF 

DISCRETE-TIME SYSTEMS 

To prepare for the derivation of the solution to the problem of robust steady-state 

tracking of sampled-data systems, we will first discuss a similar problem for discrete-

time systems. .As a review, the results for linear shift-invariant discrete-time systems are 

shown in Section o.l. For a general multi-input multi-tracking case, the necessary and 

sufficient conditions will be developed in Section 5.2. Finally, when the discrete-time 

system is periodic, the problem is solved by using the lifting technique. 

First, let us e.xamine the following e.xample shown in Figure 5.1. r is the known 

reference input, and e is the tracking error. G is a linear shift-invariant discrete-time 

Figure 5.1 .A. robust tracking problem 

plant, while K is a linear shift-invariant stabilizing discrete-time controller. A is a causal 

norm-bounded uncertainty that belongs to a certain class of perturbation that will be 

given later. The objective is to make the tracking error, e, eis small as possible in the 

steady-state value. .As one possible way, we can pose the robust tracking problem as 
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the worst-case steady-state value of the tracking error whea system uncertainty varies 

within the uncertainty class to which it belongs. 

For the tracking problem, it is natural to use the infinity norm to measure the 

signals of interest. Infinity norm is defined for the space, denoted as of the bounded 

sequences. Since steady-state tracking is the problem of interest, a steady-state measure 

in time domain, namely, steady-state semi-norm, will be defined as the performance 

measure. 

The steady-state value of an error signal is defined as limt^^ if it exists. 

In general, the limit. limt^cc may not e.xist. However, the limit superior of a 

signal, lim^--)..^ supi.>K\x(k)\, alway e.xists if i G Let Lf: denote the "tail" operator: 

—>• as follows: 

Lk :L k x  =  
x { k )  k  >  K .  

0 otherwise. 

Then, the limit superior can be defined as follows: 

lim sup |x(fc)| = lim 
K -ccc t>/v A -+00 

In the following, a steady-state seuii-norm is generalized as a performance measure for 

tracking problems. 

Definition 1 [25] (Steady-State Semi-Norm: Discrete-time) For a discrete-time 

signal x ^ l^, the steady-state semi-norm, ||.r||ss, is given by 

l|x||„ := lim sup lx(A:)l = lim 
K —•oo K —foo 

which is well defined as long as x E loo-

Note that l|x||„ = limit^co |i(^)l if Um^^co 1^(^)1 exists. One can also see that for 

any x € H^jUs < ||i|lco- This semi-norm || • Us, can be extended to and computed 
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by lliliss = max, ||x,||ss, where i,- is the /th component of i. Now the robust tracking 

problem can be evaluated by the quantity, sup^ performance measure. 

A conventional way to repose the robust tracking problem in a general form is given 

in Figure 5.2. M is the linear shift-invariant stable system representing the nominal 

part in the system that includes the nominal plant G and stabilizing controller K. A 

Figure 5.2 The discrete-time system with uncertainty 

represents the uncertainty in that system. For a more general class of perturbations 

defined in the following 

A:= {A A is linear, causal, and ||A|( < 1}. 

the stability and performance conditions are known (see [II, 27. 28]). 

In this research, the system uncertainty is restricted to the class of linear causal norm-

bounded structured uncertainty with finite memory. A bounded linear operator. A. is 

said to be a finite memory operator if A maps finite sequences into finite sequences. Let 

A/r denote the class of linear causal norm-bounded finite memory perturbations. The 

class of norm-bounded structured uncertainty with finite memory is defined as follows: 

t){n) = {diag{Ai, • • •, A„) : A.- € Af}, 

where A, : /^o —> ^co belongs to the class Af and 

II A II ll'^'^ll'co ^ 1 ||A,|| .— sup .. , < I, 
i^O |k||/oo 
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where ||A,|| is the induced norm. Since A/r C A, the existing robust stability conditions 

are still sufficient when the perturbations are restricted to the class of A/r. It has been 

shown in [25] that these same conditions also remain necessary in this situation, meaning 

that the existing necessary and sufficient conditions for robust stability remain the same 

when T>{n) is considered as the class of uncertainty for the systems. All results obtained 

will equally applied to the case when A is fading-memory operator mapping Co into cq. 

Let M (see Figure 5.3) be an bounded operator: —>• Define M as the following: 

''llA/all, ••• ||M,„||i 

M := 

IM.il 1 • • 

The robust stability problem in Figure 5.3 is solved by the following theorem: 

Figure 5.3 The robust stability problem 

Theorem 1 [25j Robust Stability (Finite Memory Perturbation) The system in 

Figure 5.3 is robustly stable iff< 1. where p{-) is the spectral radius. 

5.1 Single-Input Tracking (LSI Discrete-Time Systems) 

Robust tracking for linear shift-invariant (LSI) discrete-time systems was first intro­

duced by Khammash [25]. Necessary and sufficient conditions were derived for robust 
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steady-state tracking of known inputs in the presence of structured norm bounded un­

certainty. The robust steady-state tracking problem is defined in [25] when M is a stable 

linear shift-invariant discrete-time system. 

Definition 2 (Single-Input Tracking: LSI Discrete-Time Systems) The linear 

shift-invariant discrete-time system M in Figure 5.2 is said to achieve robust steady-state 

tracking if 

1. The interconnection o/M and A is loc-stable for all ^ £ T)[n). 

2. sup ||ei|„ < 1. 
A€P(n) 

Suppose M (see Figure 5.2) is a linear shift-invariant discrete-time system, f is 

the single input signal, and e is the corresponding tracking error. Partition M as a 

(n -J- I) X (n + 1) operator matrix: 

M = 

/ \ 
M i l  M i 2  ... 

M o y  M o 2  •  •  •  

i^-^n+1,1 Mn-\-l.2 Mn+l,n+l j 

Let Mij be the /jth element of M. Since is a linear shift-invariant causal operator, 

it can be represented by the following infinite matrix with lower triangle structure: 

M i , :  

' Mi^iO) 0 0 

M.-,(l) M.-,(0) 0 

M i , { 2 )  M i , i l )  M i , { 0 )  

\ 

(5.1) 
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-V/., is a bounded operator: l^o loo since M is. Therefore, the induced norm ||M,j|(i 

is well defined and 

|A/,vll. := sup f lM,(fc)| < oo. 
IkIIoo ;t=0 

where is the kernel representation of M.j shown in (5.1). .-V fundamental (n + 1) x 

(n + 1) nonnegative matrix is defined as the steady-state norm matrix in the following: 

/ 

M,, := 

|iV/iir||ss IIM12II1 ... II 

|M2ir||s3 11^^22111 ••• ll-V/^.n+llll 

\ 

ll^^'^n+l.lfllss ||^V/„+i,2||l ... |l-V/„^.i.„+i(|i 

.According to [25], necessary and sufficient conditions of robust tracking for the system 

in Figure 5.2 were given by the following theorem: 

Theorem 2 The LSI discrete-time system M in Figure 5.2 achieves robust steady-state 

tracking iff /^(Msa) < 1. 

5.2 Multi-Input Tracking (LSI Discrete-Time Systems) 

Robust steady-state tracking of discrete-time multi-input multi-tracking systems will 

be discussed in this section. 

5.2.1 Problem Set-Up 

Consider the MIMO linear shift-invariant discrete-time system in Figure 5.4. r € 

R** is the known reference input with dimension p; e € R' is the tracking error with 

dimension q. A represents the system uncertainty and belongs to 'D(n). The worst-case 
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Figure 5.4 The MIMO discrete-time system 

steady-state value of error e for A 6 ' D { n )  when r  is known is determined by the quantity 

max sup WiiWss. 
AEV{ n )  

where e, is the /th error signal. 

M can be partitioned as {q + n) x {p + n) operator matrix in the following: 

M = 

-V/i.i . . -V/i.p -v/l.p+1 • • ^^l.p+n 

-V/,,1 • 
• KP ^^q.p+l \Iq^p+n 

•v/,+1.1 .V/jj+i.p '^^q+l.p+l ^tq+l,p+n 

-^^q+n,p -^^q+n.p+l Mq+n,p+n 

/ 
1 ^^12 

]^21 
(5.2] 

Therefore, the following equation holds 

f - \ / -
e 

v 

Mil Mi2 

J^l2i ^^22 

( - \ 

r 
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5.2.2 Robust Steady-State Tracking 

The definition of robust steady-state tracking for a multi-input tracking system in 

Figure 5.4 is defined as follows: 

Definition 3 (Multi-Input Tracking: LSI Discrete-Time Systems) The linear 

time-invariant system M in Figure 5.4 is said to achieve robust steady-state tracking if 

I. The interconnection o/M and A is Instable for all A £ Vin). 

•2. PlUi ••= sup < 1. o<'<? 

For different output tracking errors (there are q of them) of the system M in Figure 

0.4. we can construct q different nonnegative matrices , i < i < q. 

which are referred to as the steady-state norm matrices as follows: 

/ 
WELiMunWss ||iV/.,^i||i ... ||A/.-.pf„||i 

\ 

M (5.3) 33 

^ II 5Z/=1 II-^^9+n.pH I! 1 ... IIII1 y 

Define the lower part of as 

/ 
I I  I I I  •  •  •  I I  I I I  

\ 

Ma = (5.4) 

^ lh^^?fn,pfl 111 ... ||''W^^,pf„||i ^ 

Before robust steady-state tracking is discussed, the stability robustness of the system 

in the presence of finite memory perturbation must be addressed. .According to Theorem 



www.manaraa.com

23 

1, the robust stability is determined by the lower part of the steady-state norm matrix, 

i.e., the necessary and sufficient condition is p(Ma) < 1-

We will present sufficient conditions for robust steady-state tracking in terms of the 

above steady-state norm matri.x (5.3). First we introduce the following Lemmas, which 

will be used in the theorem's proof. 

Lemma 1 [25] Let M ; —>• 'oo bounded linear fading memory operator. Let 

J € /.-o- Then 

||.V7i|U. < ||:V7||||x|U„ 

where |1M|| is the induced operator norm. 

Proof: This can be easily seen if one notices that 

= \ \ L m M L n i  +  L m M P n i \ \ c c  

< ||:V7||||Z„.r|U + ||I^.\7P„i|U. 

The second term vanishes when first m and then n goes to infinity. m 

.A. square nonnegative matrix has the following property: 

Lemma 2 [22] Let .4 be a square nonnegative matrix (i.e.. aij > 0). Then p{.\) < I if 

and only if x >0 and x < .4x imply x = 0. where the inequalities are taken component­

wise. 

Theorem 3 I f  p { M ' ^ ^ )  < 1 ,  1  <  ̂  then M is robustly stable and ||e||5s < 1 for all 

A e V i n ) .  

Proof: Define the nonnegative matrix as above (5.4) for the lower part in (5.3). 

which is associated with the uncertainty. 
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By Lemma 2, it is easy to see that /9(M^^) < 1 implies /9(M^) < 1. which is exactly 

necessary and sufficient for robust stability by Theorem I. guaranteeing that the system 

is robustly stable. 

For the second part of this theorem, we use contraposition. Suppose ||e,l|s3 > 1 for 

s o m e  i  :  I  <  i  <  q  a n d  A G  V { n ) .  I f  w e  d e f i n e  ^  a n d  y  a s  i n  F i g u r e  5 . 4 ,  t h e n  e  a n d  y  

are given by 

e = Miir + Mi2<f. (5.5) 

y = M2 i1^ + M22if. (5.6) 

By Lemma 1 and using the fact that || • satisfies the triangle inequality, we have 

1 < ll^illss < II XT -^^'.'^11" + l|M-.p+l||l||ifl|Us + • • • + ||.VV,,p+n||l||ifn|Uj- (5.7) 
/=i 

Using the fact that ||A|| < 1, we have 

IKjIUS ^ llyjiiss-! 

and the following inequalities for I < _/ < n 

IKjIUa < II^jIUS < II + IN^+j.p+l|ilil6i|ss + • • • + 
;=i 

l|-^^<?+i.p+nlMI'fn|Us- (•^•^) 

Equations (5.7) and (5.S) imply that 

x = (i.ii6ii„.---.iie;iu.)' 

satisfies x < and a- > 0. By Lemma 2, this implies /9(M33) > 1, a contradiction to 

the hypothesis. This completes the proof. • 

To obtain the necessary condition of robust steady-state tracking, we will need the 

following lemmas. The first lemma shows the effect of adding a co signal on the values 

of the steady-state semi-norm. The second lemma presents necessary and sufficient 
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conditions of constructing an admissible uncertainty. Consider the auxiliary system in 

Figure 5.5. 

Lemma 3 [2oJ Suppose the interconnection in Figure 5.5 is stable VA € 'D{n). Then 

for any A G V{n), KeHjs remains unchanged V</ € c". 

Figure 5.5 The auxiliary system 

Lemma 4 [25] Given any two sequences of real numbers fj and there exists A G Af. 

satisfying Arj = ^ if and only if 

1. < lia-'Zlloo. VA-. 

2. For any m G 2'^, there exists ifi G such that 

The following theorem states that the same condition in Theorem 3 remains necessary 

for robust tracking. 

Theorem 4 Suppose M is robustly stable and that ||e||s3 < I for all A G Vrin)- Then 

Pi^ss) < I for I < i < q. 
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Proof: We use contraposition. 

Suppose > 1 for some i. By Lemma 2, this implies that x < has a 

nonzero solution, x > 0. Suppose x = (ji, j:2, • - • --Tn+i )'• If Ji = 0. then the inequality 

y < has a nonzero solution, y = {x2,xj, - • •, Therefore, we have > 1. 

which implies that the system is not robustly stable, a contradiction. 

Therefore, we can assume ^ 0. In the following we will show that there exists 

some admissible uncertainty A € i^{n) such that (leUss > 1. i.e.. robust tracking is not 

achieved. This will complete the proof. 

Without loss of generality, assume = I. Then 

1 ^ 

•^2 

^  - ^ n + l  j  

<M' 

( \ 
1 

•r2 

y  J  

(5.9) 

e. \j, and d are defined as in Figure 5.5. where d G c^. .According to Lemma 3. 

the steady-state error will not be changed Vf/ G c". We will construct admissible 

A G T>{n) and d 6 c". which will result in jlelj^a > 1, such that Equations (o.o) and (5.6) 

are satisfied, and 

^ = M v  +  d ) .  (5.10) 

Given a sequence of positive numbers. € c^. We can choose an integer 

No > 0 and construct ^j{ k )  for 0 < < iVo and I  <  j  <  n  such that l(fj(A:)| = and 

|ei(iVo)| — 1(^ Mi.lfl + + • • • + Mi,p+nin){N'o)\ 
1=1 

— II ^ M./n||sa + IIM.p+1 II l-J^2 + • • • + 
/=! 

"t"||-^i.p+n|| 
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From inequality (5.9), it follows that |e,(.Vo)| > xi —Ci. Then we can choose .Vi > ^Vq. 

and construct for .Vq + 1 < Ar < .Vi such that |ifj(A:)| = xj+i and 

p _ 

|i/l(-^l)| = KXI-^Az+l./n + H + i\/q+i.p+„^„)(iVi )( 
/=! 

p _ 

^ II m -^A+l./nllas + ||M,+i,P^.i||iJ:2 H + 
/=! 

+ l|-^'^7+l.p+n||l-i^n+l — fl­

it follows that |yi(.'Vi)| > X2 — ei from inequality (5.9). We can repeat this process and 

come up with .Vq < Ni < N2 < • • and |(fj(A:)| = Xj+i,Vk,j such that 

|e,(.Vo)| > Ji-ci |e.(jV^i)|>j:i-e2 

| y i ( ^ ' i ) | >  • ^ • 2 - e i  \ h { ^ ' ^ 2 ) \ > X 2 - e 2  

l!/n(-Vn)| > J-rH-l -ei l^n ( ) | > - £3 

Now we construct </ € c" by specifying its jth component: 

Il^jl|oo55"(yj(0)) A: = 0 

e i s g n { y j { k ) )  i  < k  <  N n  

e2sgn{yjik)) .V„ + 1 < ^- < -^2n+l 
d j i k )  

It follows that 

llPiOlU <lin-(w + <i,)IU vfc. 

and Vm € 3m E 2"^ such that 

< \ \ P k U { y j + d j ) \ \ ^  V^^ 

By Lemma 4, there exists A € V i n )  such that ^ = A { y  +  d ) ,  while ||e,||„ > Xi = 1. 

completing the proof. • 

Corollciry 1 The system in Figure 0.4 achieves robust steady-state tracking if and only 

if p{Mi) < 1. V/. 
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Proof. If we combine Theorems 3 and 4. we get necessary and sufBcient conditions for 

robust steady-state tracking of the system in Figure 5.4. • 

5.3 Linear Periodic Discrete-Time Systems 

To prepare for the discussion of sampled-data systems, we first need to consider 

robust steady-state tracking for periodic linear discrete-time systems because sampled-

data systems are periodic. Suppose the discrete-time system M in Figure 5.6 is a linear 

periodic discrete-time system with period .V. A belongs to the same class of uncertainty 

as given before. 

Figure 5.6 The periodic discrete-time system 

M can be partitioned as following, where each element Mij is again periodic with 

the same period .V. 

M = 

( t 
.v7i.i . Mi.p ^U.p+l ^^l.p+n 

• KP -^9,p+l Mq^p-^-n 

-V/,+1,1 . •^^q+l,p+l • Mq+i^p^n 

^^q+n,l Xlq^n.p ^tq+n.p+l \Iq^fi,p+n 

(5.11) 
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The analogue definition of robust steady-state tracking when M is a periodic system 

is given in the following. 

Definition 4 (Robust Tracking: Linear Periodic Discrete-Time Systems) The 

linear periodic discrete-time system M in Figure 5.6 is said to achieve robust steady-state 

tracking if 

I. The interconnection o/M and A is Instable for all A € V{n). 

^ max sup ||e,||„ < 1. 
'-'-'AgPCn) 

In general, a function defined on 2"^ x defines a linear stable operator 

M : as follows: 

v ( l )  =  i M w ) ( l )  =  M { L h ) w i h ) ,  
h=0 

where l i  6 l ^  and v  £  l ^ .  Each M { l . h )  is a matrix 6 . If this operator is causal, 

then M ( L h )  = 0 for ail h  >  I .  In this case, the operator can be represented as the 

following infinite block lower triangle matrix of the form: 

^ ^'(0) ^ 
( ~ \ 

iV/(0,0) 0 0 
/ \ 

iD(O) 

v i l )  iV/(LO) :V/(1.1) 0 tt;(l) 

v { 2 )  M(2,0) M(2.1) M(2,2) wCD 

Equation (5.12) gives a general representation of linear casual operators. If M is 

per i o d i c  w i t h  p e r i o d  o f  i V ,  t h e n  M { l  +  k N , h  - \ - k N )  =  M ( / , / i )  f o r  a n y  p o s i t i v e  i n t e g e r  k .  

The matrix representation for a linear periodic operator is shown in Figure 5.7. It has 

a lower triangular Toeplitz structure. To deal with periodic systems, we use the lifting 

technique described next. 
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/ M(0,0) 0 0 0 0 0 . . .  \  

M(1,0) 0 0 0 0 

M(yV-l,0) yW(yV-l,l) • • M(A'-1,A'-1) 0 0 0 

M { N , Q )  A7(AM) • •  M { N , N - \ )  A7(0,0) 0 0 

yW(/V + l,0) M ( N + \ , \ )  •  •  A l { . \ ' + \ , N - \ )  AV(1,0) 0 

M { 2 N - l , 0 )  ^ l ( 2 N - \ , l )  •  •  M i 2 N - l , N - \ )  i\7(A'-l,0) A7(A'-I,I) • • A7(A'-I,A'-I) 

\ : : ; : ; : : : / 

Figure T),? Linear periodic discrete-lime sysleiii M 



www.manaraa.com

31 

5.3.1 Lifting Technique 

Let 0 = {i;(0), y(l), t;(2), • - •} be a discrete-time signal in The lifting operator 

->• is defined as follows: 

£ = I'V'vi; := < 

m v { N )  v { k N )  

5(1) v { l  +  N )  v i i + k N )  

i 

m v { l  +  N ]  
• ' ' ' • 

v i l + k N )  
• * • • 

v { N - \ )  _  v { N - i  +  N )  v i . \ ' - l + k N )  

. (5.13) 

The inverse operator exists and is defined as r = Notice that the dimension of 

the lifted signal, r € is times that of the original signal, r. Define a subsequence 

of [j v' = where / is an integer € [O.iV —1], is given by 

4  : =  v ( / + k . V ) .  (5.14) 

v = {i'(/). t'fj + .V). • • •} (E has the same dimension as that of the original signal, v. 

Clearly, Notice that the lifting operator H'V (and H''vM is norm 

preserving, meaning that the following equation holds: 

l|w^.vS|U = ll^iu. 

Suppose the system M in Figure 5.6 is a linear periodic discrete-time system with 

period jV. M is the (q + n) x {p + n) operator matri.x presented by (5.11). Therefore, 

each element Mij in (5.11) is a single-input, single-output linear periodic discrete-time 

operator with period N defined on and Mij{l,h) € . As shown in Figure 5.S. 

lifting both the input and output side of Mij, one can get a lifted system, . 
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w.MyW;J 

M;; 

I'l 

1 Mo(0,0) 0 0 0 0 0 . . .  \  

AV„(I,O) A/.,(1,1) •• 0 0 0 0 

M i j { N - U Q )  A'/.,(iV-l,l) •  M i j { N - \ , N - \ )  0 0 0 

A/,j(yV,l) •• • A7.,(yV,A'-l) A7,,(0,0) 0 0 

AVi,(/V+l,l) •• • A7,,(A'+1,A'-1) AV,,(1,0) A7.,(l,l) • 0 

AV.j(2iV-l,0) A^(2N-1,1) • • A7„(2A'-1,A'-1) A/„(A'-I,0) AV.,(A'-I,I) • 

\ : : : : ! I 

Figure 5.8 The lifted operator 
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and the system matrix representation. Notice that ') ^ and the 

resulting lifted system becomes time invariant. 

Like the definition of lifted signals in {5.14). if picking the /,th row of the output of 

Wj^MijW^^, one can define the corresponding lifted operator, {W^fMijWy^)''. and the 

matrix representation in Figure 5.9. Notice that maps into and is 

a linear shift-invariant casual operator. The induced norm can be easily computed. 

However, we are really only interested in the one-side lifted operator, which is lifted 

only on the output side. For each Mij in (5.11): w —> v. if we lift the output side and 

pick the /,th output, we can define the corresponding lifted operator. .ViT/j : w —>• r'-. as 

follows: 

-V//;: { M [ ] w ) { k )  : =  b ' ' [ k )  ^  { M i , w ) { l i  +  k N ) .  (.5.15) 

where /,• is an integer G [0./V—1], The matri.x representation is given in Figure 5.10. 

The kernel representation for M/] is given by 

: =  M , j { l ,  +  k N . h ) .  (5.16) 

where is the kernel representation of 

Note that M-j is related to {W,\ )'• by the inverse lifting operator. H'v'- Since 

Mlj is the /,th output of we have 

Therefore, as discussed above. is a multi-input (dimension N) single-output 

linear shift-invariant system. The induced norm is given by 

oo ;V — 1 oo ;V — 1 
- L L |/V/o(;,+A-'V,/,)| = 

k=0 h=0 k=Q h=0 

In order to specify M i j  completely, it is sufficient to have the knowledge of \ [ i j { k .  h ) .  

0 < /i < iV- 1, = 0.1.---. 
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H n"V S 

KA,0) • 0 0 0 . . .  0  . . .  \  

6- e U + A', 0) • • A/,j(/. + N,N-l) . . .  0  

I, i : i : : : i : : 

Figure 5.9 The lifted operator or {WN )'' 
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Mi-

W/V My A i W/V 
V: 

My 

<i>j € /oo 

5,' G /c M i j { l i  +  N , 0 )  

• • •  0  0  . . .  0  

M i j i h  +  N J . )  • • •  l \ I i j { l i  +  N , N - [ )  M,,(/„0) (/„/.•) 

0  . . .  \  

0  • • •  

: / 
CO Ol 

l-'igiue 5.10 'I'lic lifted operator iVl'-j 
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Finally, the induced norm for the defined lifted operator. A//j, can be computed as 

follows by using the fact that the lifting operator. VKv (and preserves norms. 

M^ll = sup 
\M IJ 

X^iO 

= sup 
Wyi^Q llPVVil 

oo iV—1 
= E E I'WiC"--'')! 

fc=0 h=0 

(•5.17) 

Let I = [/o- ̂ i- • • •. ̂ n] € [0. ^V—1]*^^ i'° and yj ,j € {1.2. • • •. n} are defined as above 

by (o.l4). Define the corresponding lifted system 

to [e(°. y'l'. • • •. y'n]^ as follows; 

/^') maps 

/ / N 
e " 

\ / 

Mil 

-V/JVu. 

v7'" y -^^q+n.l 

-" l .p  

V/'l •'^q+n.p 
\ ~ f l n  -"(j+n.p+1 

v7-° •"'i.p+n 

• • •  -K q+l.p+n 

V/'" 

/ - \ 
fi 

\ ^ n  /  

(O.IS) 

The induced norm for the element in (5.IS) can be computed using (o.lT). Finally, 

we can define the steady-state norm matrix (periodic discrete-time) as follows: 

/ 

MC.') 

!l ELi Aft 

ELi 

ELl 

|-^^9+l,p+ll 

\^^^q+n,p+l I 

1%+J 

hv/^Vi.p+J 

^^^i+n.p+n|| } 

(5.19) 
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5.3.2 Robust Steady-State Tracking 

Similar to the LSI case, the robust tracking condition for periodic systems is given 

in the form of the above-defined matrix, which is stated in the following theorem: 

Theorem 5 The linear periodic discrete-time system M in Figure 5.6 achieves robust 

steady-state tracking iff 

m^x sup < 1. (5.20) 

^ A J 

Proof: Sufficiency: Define the lower part in (5.19) as 

= 

\ !%n.p+il 1-^'^9+n.p+n 11 j  

where /a = ['i- ̂ 2- • • • - In] S [0. N — 1]". 

The necessary and sufficient condition of robust stability for system M in Figure 5.6 

is maX;^/9(M^) < I (see [24]). According to the hypothesis, it is easy to see that 

/9(M^'') < I implies p(M^) < 1 if one applies Lemma 2. Therefore, robust stability is 

obtained. 

Robust tracking will be proven by contradiction, i.e.. contraposition will be intro­

duced in the following if one claims robust tracking cannot be achieved even when 

max sup /9(Mi';'^) < 1. 

No robust tracking for the system in Figure 5.6 means there exists some i . l  <  i  <  q  

and A € ^{n) such that ||e,||s5 > 1. Clearly, this implies that there exists /q G [0, .V — 1] 

such that 

iehl.. > 1. 
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Define ^ and y as in Figure 5.6. then e[° and yf are given by (5.18). By Lemma 1 

and the triangle inequality, we have the following inequality, 

I < lleMi,. < II E .V/iall.. + 11 + • • • + lI'V/i^llllf.L.. (5.21) 
fc=l 

Using the fact that |jA|( < 1, we have 

111,11.. < iiftii... 

.A.S we mentioned before, there always exists a Ij G [0. jV — 1] such that 

Therefore. we have ([(fjUs, < ||yj' ' | |ss and the following inequalities for I < j < n: 

M.11.. < lli/i'll.. < IIE 1.411,. + iiM ;̂,.,̂ .,iiii6ii., + • • • + 
k = l  

+ lhW^'+j,P+.llll6ll... (3.22) 

Inequalities (5.21) and (5.22) imply that 

•r = (l.||eil|«.---.||l.||3.)' 

is a solution to x < By Lemma 2. this implies /o(M[^''') > 1 for certain i  and I. 

Necessity: .Again we use contradiction to prove this. 

Suppose /9(M^';'^) > 1 for some integer i  and I = [/q,/i, • • •./„]. By Lemma 2. this 

implies that x < has a nonzero solution, j: > 0. Suppose x = (xi. J2- • • • --ra+i)'-

First, if xi = 0. then it is clear that the inequality y  <  where /a = [/1./21 • • • J n ] -

has a nonzero solution, y , y  =  (x2, X3, • • •, x„+i)'. .Again by Lemma 2, we have /9(M!f) > 

1, which implies that the system is not robustly stable, a contradiction. 

On the other hand, if xi ^ 0, we will show in the following that there exists some 

perturbation. A G ^>{12) such that Phi.. > 1, also a contradiction, completing this 

proof. 
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Without loss of generality, assume = I. Therefore. 

1 ^ 
/ \ 

1 

•^2 
< Mil-') 

j:2 

V •^"+1 J ^ -^n+I y 

Let e|°. I, and be the corresponding lifted signals (shown in Figure 5.11) 

defined in the same way as in (5.14). where 6 c". 

.According to Lemma 3. the steady-state error will not be changed G c". VVe 

will construct (f. € P(n) .and G c" such that 

i= +d'^). (5.24) 

and 

— r 

Figure 5.11 The au.xiliary lifted system 

an admissible A € ' D { n )  can be obtained from A'^, resulting in ||e|''||5s > 1. 

Given a sequence of positive numbers 6 c^, we can choose an integer 

No > 0 and construct for 0 < Ar < NQ and I < j < n such that |ifj(A:)| = and 

lel-Oo)! = + + 
fc=l 
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> llE-wi'=^ll» + ll'W&+.lk2 + --- + 
A:=l 

+ l|-^A'.p+al|-^n+l — ei-

From inequality (5.23), it follows that |e|°(iVo)l > Ji — ei. Then we can choose 

iVi > iVo and construct ^j{k) for Ao + 1 < k < jVi and 1 < i < n such that l(^j(A:)| = xj+i 

and 

fc=i 

>  I I E  +  l h v ^ V . . , + . l k 2  +  •  •  •  +  
i=l 

+ l|-^^7+I.p+nlU'n+l -Cl-

From inequality (5.23). it follows that |^('(:Vi)| > X2 — Repeating this process, we 

come up with A'o < .'Vi < .V2 < • • • and |ifj(A:)| = xj+i.Vk such that 

|et(iVo)|>xi-ei |et(:V^i)|>.r,-e2 ••• 

|j/'i'(^Vi)l > •z^2-ei |i/'i'(-V;H-2)| >-r2-e2 

li/i"(-'^n)| > -Tn+l 1 i^!r(-^2n+l ) |  > -TrH-l ~^2 ••• 

N'ow we can construct c/'^ 6 c" by specifying its Jth component. 

d ' / i k )  :=  

l le , l l cc^^£rn(y 'nO) )  k  =  0 

6isgn{yf {k)) I < k < :V„ 

^2sgn{y/(k)) iV„ + !</?< AWi 

It follows that 

l|a?>IU<||Pi.(!i;'+</;')|UVA;. 

and Vm 6 Bm 6 such that 
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By Lemma 4. there exists A'^ € ' D { n )  such that ^ ). while ||e['||s, > xi = 

I. It is not difficult to construct an admissible A € V i n )  such that ||A|| = ||A'^|| and 

^ = A(y +1/). where y and d are constructed from and respectively, completing 

the proof. • 
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CHAPTER 6 ROBUST STEADY-STATE TRACKING OF 

SAMPLED-DATA SYSTEMS 

6.1 Sampled-Data Systems 

A sampled-data system arises when a discrete-time feedback controller is introduced 

to control a continuous-time plant with connection by the sampler and the hold. Such 

feedback control can be found naturally in numerous control applications. The resulting 

closed-loop system dynamics, known as the hybrid system, consists of both continuous-

time and discrete-time dynamics. Though a hybrid system, from the input-output point 

of view, a sampled-data system is considered as a continuous-time system. 

Consider the following sampled-data system shown in Figure 6.1. where G. the nom-

Figure 6.1 The sampled-data system 
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inal plant, is a linear time-invariant continuous-time system having the following state-

space representation: 

A SI B2 Bz 
\ 

Ci 0 DI2 DI3 

C2 D21 D22 D23 

C3 Dzi CO
 

to
 D33 

/ 

Without loss of generality, we may assume that Z^n = 0 to ensure well-poseclness of the 

feedback system. Kj, is a stabilizing linear shift-invariant discrete-time controller, which 

stabilizes the nominal plant. The plant and controller are interfaced using sampler and 

hold. Sr represents the sampling operator with time period T. while 'Hj a zero-order 

hold with the same period, r is a known reference input, a continuous-time signal, e 

is the tracking error, also in continuous-time, y and if are the input and output of the 

system uncertainty respectively, u, the output of the hold I-LT. is the control input, v 

is the measured output. Strictly speaking, Sj is not an operator on but on the 

subspace of signals. To ensure that the sampling operator acting on v makes 

sense, we assume that r and ^ are continuous signals (or at least 6 £cc which is 

reasonable in practice. This also ensures that we can sample e and y. We will analyze 

sampled-data systems with bounded signals where the signal norm is the norm. 

denotes the space of real valued meeisurable functions on [0, cc) with the norm defined as 

ll-^IUoo := e^ssupj |a:(OI < belongs to the class of causal norm-bounded structured 

uncertainty with finite memory Vin). .^.11 results obtained will equally hold when A is 

fading-memory operator mapping decline signals into decline signals. 

V { n )  =  { d i a g { A i , - - -  , A n )  :  A,- € Af}. 

where A,: Coof]'^ A^ belongs to the class Af of linear causal norm-
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bounded finite memory perturbations, and 

n \ II ^ , ~ sup -Y-r, < 1. 

where ||A,|| is the induced norm. 

The difficulty in considering the continuous-time behavior of sampled-data systems 

is that it is time varying. sampled-data system in this configuration, considered 

as a system in continuous-time, is not time-invariant even when the plant G and the 

controller Aj are LTI and LSI respectively. Instead, it is periodic with the time period 

T determined by the time period of the sampler ST and the hold HT-

In general, r and e may have dimension more than 1. i.e. the system is a MIMO 

system. In order to simplify the notation, only the single-reference single-tracking-error 

system will be discussed in the following. It can be shown that the necessary and 

sufficient conditions for the MIMO robust tracking can be easily obtained from those for 

the single-reference single-tracking-error system. .A.lso even though only sampled-data 

systems will be studied in the rest of this research, the obtained corresponding results 

can be applied to general periodic systems. 

The system in Figure 6.1 can be rearranged into the following general setting (see 

Figure 6.2). where M. a hybrid stabilized system, includes the nominal plant G and the 

discrete-time controller Aj. It is clear that M is a periodic linear stable time-varying 

Figure 6.2 The generalized system 
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system with period T. With the system setting described above, both input and output 

signals of system M are at least right (or left) continuous signals. Therefore, we can 

apply operator ST on these signals for sampling purpose. 

A conventional approach to the sampled-data system problems is to utilize the iso­

morphic lifting technique due to the periodicity (see [4]). 

6.2 Approximation of the Sampled-Data System 

.•\lthough the lifting technique can handle the periodic system nicely, the resulting 

lifted system is infinite-dimensional. One such lifting technique will be discussed in the 

next section. To deal with the infinite-dimensional system, we introduce fast sampling. 

Figure 6.3 shows the approximate discrete-time system M obtained by fast sampling 

the input and output of the sampled-data system M in Figure 6.2. ST^ and are 

the fast sampler and hold respectively with the same period T.v = T/N, where .V is an 

integer, r.e.^ and y are the corresponding sampled signals by sampler St^,-

.After fast sampling both the input and output sides, we obtain an approximate 

discrete-time system M = This resulting discrete-time system is a linear 

periodic niulli-rate system with period .V. Since M is linear periodic, the robust tracking 

conditions stated in Theorem 5 in last chapter apply. That is M achieves robust steady-

state tracking if and only if sup^-/9(M^^) < 1. where is defined by (o.l9) 

when p = q = I, the single-input single-output case. 

The approximation depends on the choice of N. It can be expected that the ex­

act robust steady-state tracking conditions for the original sampled-data system can be 

derived from the conditions for the approximate system as N oo. .A.fter this approx­

imate system is related to the original sampled-data system in the following sections, 

e.xact steady-state tracking conditions for the sampled-data system will be obtained. 
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M 
A r A P 

M 

% 

A 

V 

Figure 6.3 The approximate system 

6.3 Steady-State Norm || • ||ss as Performance Measure 

Sampled-data systems are considered as periodic time-varying systems in continuous-

time from the input-output point of view. The performance measure is related to the 

measure of continuous-time signals. 

6.3.1 Steady-State Norm: jj • i|„ 

For continuous-time signals, we consider the usual £^[0, DO) space of essentially-

bounded signals. Let be defined as the space of real valued measurable functions on 

[O.oo) with the norm defined as 

:= esssup|x(0| < oc-
t 

Let LT denote the "tail" operator on continuous-time signal 

L T  : [ L T x ) { t )  := 
x [ t )  t  >  T .  

0 otherwise. 
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Analogous to the steady-state performance measure for discrete-time systems, a steady-

state semi-norm, or limit superior, of continuous-time signals can be defined as follows 

and adopted as the performance measiure for continuous-time case. 

Definition 5 (The Steady-State Semi-Norm [| • Usa.* Continuous-time) For a 

continuous-time signal x G C^c- the steady-state semi-norm, namely ||x||5s. is given as 

follows: 

lkll« — Jim sup|x(f)| = lim ||^T-r|k^-
2 —•CO oT* T —>-oc 

which is finite as long as x ^ C^. 

Now. the robust steady-state tracking for the system in Figure 6.2 can be defined in 

the following: 

Definition 6 (Robust Steady-State Tracking: Continuous-Time) The periodic 

linear time-varying continuous-time system M in Figure 6.2 is said to achieve robust 

steady-slate tracking if 

1. The interconnection o/M and A is Constable for all A € T>{n). 

sup < I. 
A€f(n) 

6.3.2 System Set-Up and Lifting Technique 

Partition M as the following, where each element M,j is again periodic with the same 

time period T 

( \ 
e  

y\ 

\ / 

( 
Mn A/12 

iV/21 M22 ^2,71+1 

-W^ri+l.n+l 

\ ( \ 
r  

^1 
(6.2) 
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As discussed previously, we will deal with sampled-data systems by using the lifting 

technique due to periodicity. The lifting operator WT for the continuous-time case can 

be visualized as cutting the continuous-time signal on [0. oo) into a sequence of pieces, 

each is a real valued function on the interval of [0, T\ (see Figure 6.4). Let T\ denote 

the space of [0. r|-valued sequences. Suppose v G £^[0. 3c). the lifting operator 

t-sampling 

0  1 2  3  4  

U' 

Figure 6.4 The lifting and i-sampling operator 

WT'. -CcofO. oc) —>• assigns to the signal v its lifting £ = {iit}- which is given by: 

for each k. Vk e £,c[O.T']. 

Vk[ t )  := v{ t  +  k T ) ,  0 < t < T .  (6.3) 

The norm is defined as 

l'-"'?=c[o.n :=sup||ak|U=„[o,r] < oo. 

WT is a linear isomorphic operator, its inverse operator Wj^ is well defined, and 

V = Wf't;. Notice that the lifting operator (and its inverse operator) preserves system 

and signal norms. Also notice that the lifted signal {yjt} is a sequence of real-valued 
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functions over the interval of [0. T ] .  Each Hf. belongs to the infinite-dimensional space. To 

deal with the infinite dimensional problem, we introduce the ^-sampled version (shown in 

Figure 6.4) of the infinite-dimensional signals. For a signal v € C^o the f-sampled 

version of the lifted signal is given by an signal, y' = and 

4 := £)t(0 = lit^-kT). (6.4) 

where t  is fixed G [0. T ] .  It is clear that € /oo is a discrete-time signal which has the 

same dimension as v. Since it is a discrete-time signal, the steady-state semi-norm for 

this lifted signal is defined as ||i''||si = limA'-».oo 

Based on the definition of the lifted and i-sampled version of signals, one can define 

the corresponding one side (output side) lifted and i-sampled version for systems (see 

F i g u r e  6 . 5 ) .  G i v e n  a  l i n e a r  b o u n d e d  c o n t i n u o u s - t i m e  s y s t e m  M  m a p p i n g  C . y ^ f ] 7 l C  

signals into signals. .V/; w t-)- v, with period T. the lifted and f-sampled 

system M': w i'' is defined as follows: 

A/': (A/'a')(Ar) := =  { M w ) { t + k T ) ,  iis fixed G [0.7']. (6.5) 

Clearly, A/' maps C^f]TZC signals into signals. Following the similar argument 

we used for the discrete-time case, the above defined system .V/' is related to a linear 

time-invariant system, namely A/'l-Pf ̂  by the operator Therefore, given the kernel 

representation M { t ,  r ) ,  a function on 7^ x 7^, of the system A/, the kernel representation 

A/'(/:, r), a function on x TZ. for the newly defined system A/' is as follows, 

: =  M { t  +  f : T . , T ) .  

.A.lso the induced norm is given by 

-  f :  r \ M ' { k , T ) \ d T .  (6.6) 
tS-'" 

.\'ow using the definition (6.5) of lifted and /-sampled version of systems, for each 

element A/,j of the system M given by (6.2), we lift and then sample the output of 
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0 T 2T 3T 4T 

M 
W  

h r b u-r^ ^ 

0 T 2T 3T 4T 

M' 
w 

M' 

0 

w 

Figure 6.5 The lifted and f-sampled system 

M,j at ti G [0. r]. Similarly, the resulting system :V//j maps signals into 

signals. Let i = [ti, t2- - • • • ^n+i] G [0. rj""*"'. a real valued vector. .After defining .V/,^ for 

each element of the system M. we define the corresponding lifted system M' mapping 

to as follows. 

/ 
e'. ^ 

/ 
.V/(l Mlh -

/ \ 
r 

yl' = 

•
•
 

M^l . 

\ 
y'lH-l i>n y \ -'^'n+1.1 

Given the induced norm defined by (6.6), the continuous-time steady-state norm 
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matrix can be defined as follows: 

/ 

ML := 

\ 

lhw.Vll,. 

• \m^\\ 
(6.8) 

Tliis matrix will play an important role in the conditions for robustness. From the 

robust tracking definition, it can be seen that the robust tracking problem consists of 

two parts: robust stability and robust tracking. The stability robustness of the system 

in the presence of structured norm-bounded perturbation has been addressed in [24. 25]. 

which will be stated in the following. The solution for the tracking component will be 

presented in the next section. 

Define the following nonnegative matrix: 

/ 

:= 

•2.n+l| 

I V/''"+' n+iii y 

where = [^2. • • • r ^n+i] € [0, T]". is the lower n x n matrix of 

.A. necessary and sufficient condition for robust stability of the system in Figure 6.2 

is given by the following theorem. 

Theorem 6 (Robust Stability) The interconnection of the periodic continuous-time 

system M in Figure 6.2 and A is C^o-stable for all ^ ̂  'D{n) iff 

sup p(M^) < 1. 
«A€[o,r]" 
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6.3.3 Robust Steady-State Tracking (|| • jjj. Case) 

In this section, it will be shown that the exact robust steady-state tracking conditions 

for the sampled-data system can be derived based the continuous-time steady-state norm 

matrix defined above. 

Lemma 5 Let H: C^o ^oo norm-bounded linear finite memory operator. Let 

X € Then 

(6.9) 

where (|//|| is the induced norm. 

Proof: The proof is similar to that for the discrete-time case. • 

Before addressing the exact necessary and sufficient robust tracking conditions, we 

give the following two lemmas. The first lemma shows that the steady-state semi-norm 

II • liss defined for the lifted signals is a continuous function with the sampling point t 

as its variable, provided the original reference signal satisfies a certain condition. The 

second lemma states that the value of the steady-state semi-norm for certain signals is 

achievable by the steady-state semi-norm value for the corresponding lifted signals. 

Lemma 6 Suppose f{x) is uniformly continuous on [0.oc). Let /' = {/'(A;)} be defined 

by (6.4)- Then g{t) ;= ||/'||ss is continuous on [O.T]. 

Proof: By hypothesis, f i x )  is uniformly continuous on [0, oo). It follows that for all 

e>0, there exists a ^>0 such that 

V x , i / > 0 ,  l i / - x | < 5  = »  \ f { y ) - f { x ) \ < e .  

By definition (6.4). for all t ^  and t y  6 [0, T], \ t y  —  t j ; \  <  8 .  implies 

| / ' v ( A : ) - / ' ^ ( A : ) | < e ,  V A : ,  
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^ l/'='(^-)l<l/'^(A:)l+e, Vfc. 

=> sup l/'lfc)! < sup l/'"(Ar)|+ e. 
k>K k>K 

^ lim sup \f''{k)\ < lim sup 1/'^(A:)| + e. 
^ k>K ^ k>K 

=> 9{ty) - 9ii^) < ̂ • 

Similarly, jfy —ixl < S also implies^(fj:)—5r(iy) < c. Thus |^(^j,)-5f(^x)| < e. Vliy-fj| < J. 

i.e. g{t) is continuous. • 

Lemma 7 Suppose f{x) is uniformly continuous on [O.oc). Let p{k) := f{t + kT). t € 

[O.r]. Then 

11/11" = max II/'11^3- (6.10) 

Proof: .A.S in Lemma 6. let g i t )  := H/'ljas. Then. g { t )  is continuous on [O.r], which 

implies ma.Kj5r(f) exists. Let L := maX(5r(f). It is clear that ||/||s3 > ||/'||s5 for all 

/  6  [ O . r ] .  i . e .  \ \ f \ U s > L .  

By uniform continuity, for all e > 0, there exists a ^ > 0. .YS = T for some integer 

.V such that 

|j: - (/I < ^ =j> \  f { x )  -  f i y ) \  <  

Now we divide [0. T ]  by 5  and get N  points. Let L i  := g { i )  <  L .  i  =  O . 5 .  -  •  • .  (.V — 1)^. 

For each i, there e.xists a A',, such that 

sup |/'(^-)| - Li < 
k>R\ ^ 

=> sup |/'"(A:)| < Li + ^ < L + i 
k>R\ 2 2 

Let A' := max,-{A',}. Then 

sup 1/'(A:)1 < L + ^, \/i = O.S,-• • .{N - 1)5. (6.11) 
k>f: -
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Again by uniform continuity and (6.11), for each i  and t i  € [ i A  + 8 ) .  the following is 

true. 

\ r ' ( k ) - n k ) \  <  vfc, 

<  l f ( f c ) l  +  |  <  £  +  £ .  k > f :  

Therefore, it follows [/'(A*)! < L -{• t. for all k > K, and t G [0. T"], which implies 

l/(j^)l < L + e, for all x > AT. i.e. L < ||/||ss < L t. Since e can be chosen to be 

arbitrarily small, the proof is completed. • 

Notice that the requirement of uniformly continuity is relative "strong". For example, 

the output signals of the hold are piece-wise constant for each time period and so they are 

not even continuous. Obviously the equality (6.10) still holds for such right continuous 

signals. En this case, however, there is a bound on the rate of change of the signal except 

for some discontinuous points. For such kind of signals, it can be shown that Lemma 7 

still holds. 

.-Assume the matrices D22-^23, ^32 and D33 of G in Figure 6.1 are zero matrices. 

Since the system is a norm-bounded linear system, we conclude that signals e and y 

have the property shown by Lemma 7. 

Now we are ready to state our main results. 

Theorem 7 Suppose M is a norm-bounded linear system shown in Figure 6.2. Let 

be the matrix defined by (6.8). If 

sup p(M^J < I. (6.12) 
f6[o.r]"+' 

then the system in Figure 6.2 achieves robust steady-state tracking. 

Proof: .Again define the following matrices: 

:= 

' ... W2^^v\\ ^ 

( 6 . 1 3 )  
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as before, where = [^2, • • • • tn+i] € [0. r]". By Lemma 2, supjp(M^^) < 1 implies 

sup,^ /9(M^) < 1. This is exactly the same necessary and sufficient condition for robust 

stability of the system stated by Theorem 6. 

The tracking part of this theorem can be proved by contradiction. .\s discussed above, 

in this system setting, signals e and y satisfy Equation (6.10). Suppose ||e||„ > I. for 

some 6 V{n). By Lemma 7. ||e||aa > 1 implies that there exists BL t\ ^ [0-2^] such 

that i|e''||as = ||e||sa > 1. .According to the Equation (6.7) and the triangular inequality 

property, it follows that 

+ l|M;L+,llile.||«. (6.14) 

By the fact that ||A|| < 1. then ||(fj||ss < lli/j| |ss- V_/ G [Ln]. .Again. Lemma 7 implies 

that for each j. there e.xists a € [0. T]. such that 

IIOIU. < lly.ll- = W y / ' l s s  

+ (6.15) 

Equations (6.14) and (6.15) together imply that x = (1. |jifiII55. • • •, j|fni|ss)^ > 0 is 

a solution to .r < where i' = [^1, ^2^ • • •. 6 [0. This implies that 

p(MfJ > 1 for some in contradiction to the hypothesis. This completes the proof.O 

Lemma 8 Let M be the sampled-data system in Figure 6.2, which includes the LTI plant 

G and controller IQ. M is a bounded operator on the subspace of signals. Let 

M = STftM'HTst ^ where T_\ = T/N, iV > 0 is an integer. Then, for r, a 

uniformly continuous signal, 6 £00 • 

lim | |iV/r||„ = | |iV/r(|„. (6.16) 
iV—+OC 

where r = Sj^^r is the sampled signal of r. 
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Proof: See the approximate system in Figure 6.3. Let r := Sr^^r. r  := Since r 

is uniformly continuous, we have 

It follows that 

which implies that 

lim l|r - r|l„ = 0. 
iV—•oo 

||.Sr,Mr||„ - WSr^Mrl 

< ||5rv-V/(r - r)||^, 

< ||5Tv-V/|||l(r - r) 

lim ||5T,v^/r|l„ = lim ||<Stv-V/''I1«-.V->OC ;V—KOO 

(6.17 

(6.18) 

By the setting of M. it is clear that Mr is uniformly continuous, if r is. Therefore, the 

following is true 

lim ||iV/r| = lim |l<ST.v^/r|h .V-foo 

= lim | | 5T,-V/r||. 
:V--Vcc 

= iuV/rii,,. 

• 

In the following, we will discuss an approximation procedure of sampled-data system. 

Let t = [fi. ̂ 2, • • •. ̂ n+i] 6 [0, For a given periodic system M and its partition 

representation shown in (6.2), the corresponding lifted system is as follows: 

M' := 

Mil 

Mil 

Mti 

Mil 

V/'' '"l.l tH-1 

• -"n+l.rH-l / 

(6.19) 
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and its steady-state norm matrix is given by, 

/ 
IliV/iVll.. \ \ M M  • • •  l|iV/[UII 

\ 

M' 
\ \ M M  • • •  

(6.20) 3S 

ll-WiTuil ••• ll'V/StVill rH-UrH-l II y 

Let fast sampling period 7^v = T / N .  Consider the approximated system given in 

Figure 6.3. The resulting discrete-time system is periodic with period A". Theorem 5 

applies to this approximated system. 

Now. let ki^ be the closest approximation of ti G [0. T"]. = li.\ * {T/N) for some 

integer /,.v 6 [0, .V—1]. The choice of depends on the point ti as well as the value of .V. 

Obviously, we have ki\ —>• as N —> oo. Similarly, we define as the corresponding 

l i f t e d  d i s c r e t e - t i m e  s y s t e m  o f  - V / , j .  d e n o t e s  t h e  a p p r o . x i m a t i o n  o f  t h e  s y s t e m  M - j .  

Now. the overall appro.ximate system of M' in (6.19) is given by 

.V/if 
(6.21) 

Vr'n+l..V jCfln+l.N _ Tr'n+l.^V 
y  - ' ^n+1 .1  - "n+1 .2  - "n+ l .n+ l  

and the corresponding steady-state norm matrix is as follows: 

l|Mirr||„ ll-V/iVII ... 
(6.22) 

I,ii.wlyurii.. listen ... 
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where /.v = [li.x.hx^'' •-U+i.y] € [0, .V — l]""*"' is the closest approximation of t = 

A convergent approximate procedure to the system norm has been discussed in [3]. 

Lemma 9 Suppose M is a norm-bounded linear system, which maps fl signals 

into n signals. Let A/' and :V/'^ be defined similarly as above. Then the following 

statements are true: 

lim ||.W-'»|| = IIM'II, (6.23) 

< IIW'II < ^ + + (6.24) 

where A'o and A'l are constant depends on the dynamics of the plant G. 

Now. we are ready to present the following theorem. 

Theorem 8 ff > I for some i € [0, then the system in Figure 6.2 does 

not achieve robust steady-state tracking. 

Proof: We will prove it by using the approximate system (Figure 6.3) by fast sampling 

of the sampled-data system discussed above. .According to Theorem 5. the approximate 

system M achieves robust tracking if and only if sup^-^ /?(Mj-^) < 1-

By Lemma 8 and Lemma 9. the steady state norm matrix converges to 

component-wisely when .V goes to oc. Since each component in converges to and 

bounded from above by the corresponding component in we can choose a secjuence 

of iV such that the convergent sequence of the each component is a nondecreasing se­

quence. 

By the discussion above and the continuity of spectral radius function, the hypothesis 

P(ML ) > I implies there exists a K such that for all iV > p(M^*]^) > 1. Similar to 

Equation (6.13), define which is the lower n x n matrix of M^'^. where = 

[^2jV, • • • r Iu+I.N] € [0, — 1]". 
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By the proof of Theorem 5 in last chapter for periodic discrete-time systems. ) > 

1 implies either. 

1. piM'i") > I. therefore we have /9(M^) > 1 by (6.24) and monotonicity of the 

spectral function of nonnegative matri.x, where = [^2, • • •. ̂ n+i] € [0. T]". This 

means that the interconnection of A and M is not robustly stable. 

2. Or, there exists a A € V{n )  such that IjeUss > l- i-e.. no robust tracking, .\ccording 

to  t he  sys t em se t t i ng  in  F igu re  6 .3 .  t h i s  imp l i e s  Hedaa  >  1  wi th  i npu t  r. 

The appro.ximate input signal r can be arbitrarily close to the input signal r of the 

sampled-data system in the sense of the steady-state semi-norm. From the proof of 

Lemma S, we have lim,v_^,^o |jr — rjlsj = 0 lim.v-i-oc ||e — e\\ss = 0. where e is the 

tracking error of the sampled-data system with r as the input reference. By a similar 

proof in [26], the worst-case steady-state tracking error of the sampled-data system is 

given as following provided that p(M22) < 1: 

sup ||e| ( s s  = Mil + MI2(/ — M22) (6.25) 
V { n )  

It follows that supp^^j nondecreasing since the sequence of each component of 

is nondecreasing. Therefore, for the second situation discussed above, there exists 

an integer .V large enough such that ||e||„ > I implies ||e||sj, > I. .\ continuous-time 

uncertainty. A. can be constructed from A by letting A := (see Figure 6.6). 

It follows that there exists a A defined as above such that the system in Figure 6.2 does 

A 

Figure 6.6 .A.n equivalent uncertainty 
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not achieve robust tracking when r is the tracking input. 

Now. we complete this proof by showing that A constructed above belongs to V { n ) .  

By the assumption of the system, y E fi Then. |1j/||oo > ||y|lco and ||^||oc = ||<f||cc-

which implies ||A|| < 1 as long as ||A|| < 1. This completes the proof. • 

6.4 Steady-State Norm II • lie, as Performance Measmre 

Robust steady-state tracking conditions are derived in last section by using the 

steady-state norm. || • ||ss as the performance measure. However, the results are re­

stricted to certain systems as described above. The reason is that in general we do not 

have llellss = supj jje'llsj though the equality holds when e is a uniformly continuous 

signal. The assumption in the system setting of D22T D23, D32 and D33 to be zero ma­

trices is relatively strong. This assumption simply ensures that the output signals of 

the system have the property described by Lemma 7. In order to drop this requirement 

posed on the system, another steady-state norm is introduced in the following section. 

6.4.1 Steady-State Norm: j] • \\cs 

Notice that the lifted signal e* is a discrete-time signal. The steady-state norm, || • ||ss. 

for e' is given as. 

||e'||,, := lim ||LA-el.||;=c. (6.26) 
A —•OC 

However, with the steady-state norm defined by (6.26), the signals {e': t G [0. T]} may 

not capture the property the original continuous-time signal e has in the sense of stead\'-

state norm. Consider the following example, e is a continuous-time signal as shown in 

Figure 6.7. e(^) = 0 except for the triangles with peak value of 1. The width of the 

triangle base, 1/A:, goes to 0 as /: goes to 00. It is clear that ||e||ss = 1 while ||e'||„ = 0. 

f o r  a l l  t  6  [ 0 .  T ]  b e c a u s e  l i m / v - _ , . c o  W L f c e ^ W i o c  =  0  f o r  a l l  t  €  [ 0 ,  T ] .  
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,Q /\T ^2T /k-I)T ^ 

I 1/2 1/k 

Figure 6.7 An e.xample: || • ||„ vs. || - ||ca 

To retain the steady-state norm property of the continuous-time signal, a new defi­

nition of the steady-state norm for lifted signals is introduced in the following. Instead 

of defining the steady-state norm of the discrete-time signal e' by only investigating its 

discrete-time values, this new steady-state norm is defined for e' by studying its behavior 

in the original continuous-time signal. 

First define the following intervals. For f G [0. T]. 0 < ^ < T/'2. let 

[f — s.t + if [f — (J. f -t- c [0. r], 

[0.f-h(^] if <-<^<0. (6.27) 

[i - r] if t  +  5 > T .  

Let denote the space of functions on interval f [ t . S ] ,  and the 

space of C ^ I [ t . S ]  valued sequences. Define the lifting operator W t j :  £oo[0. oo) 

^T^i[t.s] follows. For e € £oo[0. oc), Wt,se := where 

:= e{T +  k T ) .  r ^  (6.28) 

The norm of =: is defined by 

= sup sup \ e { T  +  k T ) \ .  
fc 

Note that e fc' € I [ t , S ]  takes values over the interval /[i,5]. Each e^'"^ contains infor­

mation of e in the interval The signal e'-'^ = will be studied in the rest 

of this research instead of the discrete-time signal e' = {cfc}. Similarly, the semi-norm: 
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||e''''||ss := limATH-cc \\LK^'^'^\\I is well defined. It can be considered as a positively valued 

function of 6 and decreases as 5 does. Therefore the limit e.xists as 8 —>• 0. and this limit 

is defined as the new steady-state norm. 

Definition 7 (Steady-State Semi-Norm || • ([„) Suppose e € is a continuous-

time signal. Let e' = {ej.}, /[i,5] and be defined by (6.4). (6.21) and (6.28) 

respectively. Then the steady-state semi-norm || • [jcs is defined as follows: 

The difference between the above two definitions of steady-state norms. ||e'||cs and 

||e'||s5. bears analogy to the difference between the limit value limf-Kg e{t) and the value 

e{to) of the function e at the point IQ. The |1 • |jca norm is defined by the continuous-time 

signal's behavior at the neighborhood of the point of interest rather than just by the 

value at the single point itself. The single point value is not relevant in this definition. 

Notice that for a uniformly continuous signal e. ||e'||cs = ||e'||as. Now. let us use 

the new steady-state norm || •lU to measure the signal in Figure 6.7. .\t t = T. 

[[t. 5] = [T — 5. T] as defined above, then > 0. lim/c-j-oo = I. It follows that 

!k^l!c3 = l = !!e||;,a while {je^jjaa = 0 becausc c ^ { l c )  = e { k T )  —  0. 

Lemma 10 Suppose e is a continuous-time signal E C^. Let steady-state semi-norms. 

II • Ijis and II - Ilea, be defined as above for the original continuous-time signal e and the 

lifted signal e' respectively, there exists t' £ [0. 7"] such that 

Proof: .As shown in Figure 6.8, we start with the interval /Q = [0, T ] .  Let e^° := 

where e j ^ i r )  = e(r + k T ) ,  r  E  Iq .  The norm is given by HL/v-e^ojl/o = sup^tsuptg/g |e(r -|-

kT)\. It is obvious that UmA:-».cc ||^/\£^°ll/o = INIUs- Then divide each of the intervals 

of length T into n subintervals of length T/n, where n is an integer. It is clear that 

||e'||„ := lim lim \\Lf:e^-^\\i. 
J-fO /v-+oo 

(6.29) 

lle|U = ||e'*IU (6.30) 
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there exists a subintervai, namely /i. such that limK•-^oo = Hejlss. where is 

similarly defined as above. Once again, we can divide the subintervals Ii further into 

n sub-subintervals of length Tfii}, and there exists a sub-subinterval, say /a, with the 

following equality limA-_^oo \\LKe^''\\h = ||e||55-

0 T J, 2T (k-l)T J, IcT 

Figure 6.8 The new steady-state norm: [j • ||cs 

Repeating this process, we obtain a sequence of intervals with Iq D Ii D l-i D • • • D 
f j  D  •  •  • ,  a n d  t h e  c o r r e s p o n d i n g  s e q u e n c e  o f  r e a l  n u m b e r s  w i t h  T / n  >  T / n ^  >  >  

T/n-' > • • These intervals are nested and the length of these intervals Tin-' —>• 0. Since 

each Ij is closed and bounded, then 

^  n  ^ 
j=Q 

Since / C /j for each j .  limj_,.,::c o.  However, the limit, limj-).,,; /j, can not be an 

interval because the length {Tin-') of the the interval. Ij. converges to 0. Therefore 

I J converges to a unique point t' € [0. T] as j —>• oc (see a complete proof in [7]). 

Since limA,'-^, :^ WL^e'^Wi^ = llell^^ holds for each j .  the l imit ,  l imj_i. ,x;  l im/^-_^co WL^e^^Wi^,  

exists and equals the constant ||e||5s. Since Ij oc, we have ||e''||c3 = 

limj_^cc liniA'-»^co \\LK^''\\IJ = ll^llss- This completes the proof. • 

6.4.2 Robust Steady-State Tracking (|| • ||c5 Case) 

Let M be a linear norm-bounded system mapping HIZC signals into f) TZC sig­

nals. With the lifted signals and defined by Equation (6.4) and (6.28) respectively, 

one can define the following systems: 
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1. .V/': mapping C-x. signal x into J/' G = (/'-

2. mapping L^^TIC signal x into ~ 

In order to derive the robust steady-state tracking condition, we need the following 

two lemmeis. The first lemma shows that ||iV/'|| is a continuous function of t over the 

interval [0. T], Using this property, we will show in the second lemma that the triangular 

inequality holds for the steady-state semi-norm. || • 11^^-

Lemma 11 Let M be the sampled-data system in Figure 6.-2, which includes the LTI 

p l a n t  G  a n d  c o n t r o l l e r  K ^ .  M  i s  a  n o r m - b o u n d e d  o p e r a t o r  o n  t h e  s u b s p a c e  o f  C ^ f \ ' R C  

signals. \P is the lifted operator defined as above. Then f(t) := ||-V/'|| is a right 

continuous function on [0. T] 

Proof: Suppose t i  and t 2  € [ O . T ]  and < t -i. VVe need to prove that t y  —>• ti 

Since it is linear time-invariant system, the plant G maps right 

c o n t i nuous s i gnals into right continuous signals. Suppose x € C^f]7iC. then Mx is 

right continuous as well. By definition of A'Px. we have — iV/''.r||^ —>• 0 as 

t-i ti. It follows that when t2 ti. 

Lemma 12 Let M be the sampled-data system in Figure 6.2. which includes the LTI 

plant G and controller Kd. M is a norm-bounded operator on the subspace of C^ClTZC 

signals. iVP is the lifted operator defined as above. Let x 6 Coor\T^- Then 

This implies that ||A/''|| -)• 1|:V/''|| as t-i —> • 

lIM'xIU < IIM'II-11x11 (6.31) 

where | | iV/ ' | |  is the induced norm. 
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Proof: Let be the interval defined by (6.27). For r 6 consider the lifted 

signals . i fx  € of Mx as defined above. Because of the linearity of the operator 

for all T € l[t. (i"], 

\\LmM^x\\,^ < \\L,n-^rLnX\\l^+\\Lm^rP^x\\lo. 

< ||iVr||-||i„x|u.+ ||z^.vrp„.r||,,.. 

Now take sup on both side over 

sup ||l„.vrx ||;cc < max ||.vr|| • ||Z,„ j:1|c^ + sup \\Lm.\rPn^^Wr^-
r6/[«.<n r6/[f.J] 

The ma.ximum exists because of right (or left) continuity of ||A/^|| on [0. T] by Lemma 

11. Then, first let m go to oo. the term ||Lrn.V/'"Pn-r|h>= goes to 0 since .V/'' is a finite 

memory operator. .And finally, take the limit as n and 6 go to oc and 0 respectively, by 

definition of the steady-state semi-norm in (6.29) 

IIM'xiu<i|.vrii-i|x|u. 

-N'oticethat lirry_,.o ||:V/'"|| = HiV/'H because of right (or left) continuity of || A/'" ||. 

• 

With the new steady-state semi-norm given by (6.29). we define the following steady-

state  norm matrix:  

M' := 
Mil lVIi2 

M21 M22 / 

/ 
\Ml\r\l-s 

•il'-llc. 

\ 
liV/ilS TVfUl' lies 

\ M l h \  
\ 

(6.32) 

Now the main results are ready to be presented. In the last section, there are assump­

tions on signals and the D matrix of the system. However, as the following theorems 

show by using the new steady-state norm defined above, similar results hold without 

these restriction on the system setting. 
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Theorem 9 The system in Figure 6.2 achieves robust steady-state tracking if 

sup/)(M'j < 1, (6.33) 
i 

where t € [0. 

Proof: The proof will go through similarly as in the proof of Theorem 7 if the following 

is noticed. Suppose ||e||ss > 1. By Lemma 10 this implies that there exists a t\ such 

that ||e''||cs > 1. -According to Lemma 12 it follows that 

I < ||e''||„ < l|M;;r||„ + ||iV/[*2|||!eilU. + ••• + IIAA'WiilllealU.- (6.34) 

By the fact that ||A|| < 1, ||^jl|ss < € [l,n]. -Again by Lemma 10 and Lemma 12. 

for each j. there exists a ij+i- such that 

IICIN. < < ll-wjiv.,--!!.. + + • •• + IIIIII?,Il«- (6.35) 

Equations (6.34) and (6.35) imply that there e.xists i' = ^2-• • • • such that 

(It ||<filUs-• • • • IKallss)^ is a solution to x < > 0. Therefore. ^(M'^) >1. • 

Following the similar modification and using the same argument in the corresponding 

proof of Theorem S. one can similarly prove the following theorem. The proof will be 

omitted here. 

Theorem 10 I f >  I for some t, then the system in Figure 6.2 does not achieve 

robust steady-state tracking. 
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CHAPTER 7 COMPUTATIONAL ALGORITHM AND 

SIMULATIONS 

7.1 Computation Algorithm 

The original sampled-data system is a linear periodic time-varying hybrid system 

with period T. The robust tracking problem is solved in the last chapter by using the 

lifting technique. However, the result is based on the following so-called steady-state 

norm matrix 

M' := 
Mil Mi2 

P^l21 1^22 

/ 

\ 

IIM'i'-IU. • IIXU.II ^ 

\Wi\r\\„ 
(T 

and the obtained robust tracking conditions in Theorem 9 and 10 are "infinite dimen­

sional conditions," 

sup/9(ML) < 
i 

where t = [^i, ^2, • • •, ̂ n+i] G [0, The supremum is taken over the interval [0, T\ 

for each f,. The system induced norms in is not readily computable, and neither is 

the robust tracking conditions due to this infinite dimensional property. 

As discussed in [35]. this problem can be solved by appro.ximation rather than an 

exact procedure. The infinite dimensional system can be approximated by fast sampling, 
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say with period T / N .  N  > 0 is an integer. Therefore, the robust tracking problem of 

the original sampled-data system is solved by the approximation of the robust tracking 

problem of the approximate discrete-time system. -A.s shown in Figure 7.1. the resulting 

approximate system is a multi-rate periodic discrete-time system with period N from 

the input-output point view. The e.xact robust tracking conditions are proven after being 

M 

A 

Figure 7.1 The approximate system 

compared to the robust tracking conditions of the appro.ximate discrete-time system. .A.s 

in Section 6.3.3. let I2N, • • •, /TI+I.JV] € [0. iV—1]"+^ be the closest appro.ximation 

of i = [^i. ^2-• • •. ̂ 7i+i] € Define the steady-state norm matrix of the 

approximate discrete-time system as follows: 

/ 

:= lliV/^ril . lliVfeill 

Obviously, is computable since each element of this matrix is. The computation 
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algorithm for samplecl-data systems is given in the following by showing the convergent 

upper bound and lower bound from the approximation. 

By Lemma 9, each element of the induced norm in the steady-state norm matrix 

is bounded by the corresponding induced norm of the approximate system, i.e.. 

A'o and A'l only depend on the dynamics of the nominal plant not the discrete-time 

controller. This is because the discrete-time controller only effects the hybrid system 

at the sampling instants, while the interstate is governed by the nominal plant. By 

Equation (7.3). we have lower bound and upper bound for ||-V/,^'|| and clearly both 

bounds converge. 

The elements of induced norm in (7.1) are computed by the convergence discussed 

above. Obviously, the steady-state norm term 1| • ||cs in (7.1). is not readily computable 

either. However, if we only impose the requirement of uniform continuity on the input 

signal r. which is reasonable in practice, without changing the setting of the system, we 

have II • lies = II • liss a-nd the latter can be computed by approximation. Even though r is 

required to be uniformly continuous in this case, steady-state matrices (6.8) and (6.32) 

for the II •lU and II • lie. semi-norm cases respectively still remain fundamental different. 

In (6.S). not only does r need to be uniformly continuous but also the corresponding 

D matrices of the system are required to be zero matrices. However, for (6.32). when 

we discuss computation, the only requirement is imposed on r . the input reference. 

Actually, as discussed in last chapter, we can relax this requirement on r a little. 

In the following, we will show the convergent process of computing the semi-norm, 

II • llij. Lemma 9 was prove in [3] by giving bounds of the following induced norm: 

||(/- ('WTjv'^T,v)~^)k(Hr^5T^W)|| < (7.4) 

where denotes the left inverse of [TH-TI^STS) on the range of 7^(M). A'a is a 
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constant determined by the plant G. It is clear that we have 

\\Mr -'HTySTsM'HT,yST_.^-r\\ss < ilHrv^r^^V/r - .V/r([ss + 

+ {{HTi^STi^Mr - MTiTySr^rllss-

By inequality (7.4). it follows that 

ll^^r.v^Tv-V/r - :V/r||„ < 1|(/ - ('KTv5T.v)-^)k(?.^.,5^.,.V/)||||^Tv5r,.-V/rl 

(7.5) 

Since r is assumed to be uniformly continuous, then 

||r - < A'-^||r||„. 

where f \ .  a constant, is the bound of the derivative of r .  Therefore. 

< 11 HTX ̂ Tff 1111 — "^r V «^r VI 

T 
+ (1 + -^)l|«^Tv-^^'^rv (7.6) 

where the last step is from Lemma 9. Let M := It follows that 

||Hr,.<Sr.:V/r||,, < [<- k* Us "i" 

+ MV-T^STi^r]. (7.7) 

Combining inequalities (7.5), (7.6) and (7.7), we obtain, 

\\Mr — STS M HTff St j^  r  I  

T 
^ + (1 + ^)||.W||1 ||r||„ + ̂ ||Wr„.5T,.Vfr||, 

< (1 + ̂ )A'|[^ + (1+^)||W|| k « + 
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|Mr|U < (l + ^)A'|[^ + (l + ^)||M|| 

+ (1 + -^)||'Hr,v«^T.v-^^'^Ty'^T,v''IU^ 

+ 

+ 

+ (1 + —)||iV/r||„, (7.8) 

where r :=STyr. The last step follows by using the fact. ||'Hrv|| = 1-

By the convergence as shown in (7.3) and (7.S), all the elements of M'-^ are convergent 

to the corresponding elements of as N goes to oc. Therefore, the spectral p(My^) 

will converge to /9(M'j) as .V goes to oo because of the continuity of the spectral radius 

function. 

Furthermore, applying Equations (7.3) and (7.8) to the steady-state norm matrix 

M'^. we obtain a lower bound and an upper bound for each element in and both 

lower and upper bounds converge as the fast sampling period goes to 0. This means that 

the robust steady-state tracking condition, ^(M'j). can be appro.ximated and computed 

by the discrete-time case. y9(M'^). at the convergence rate of 1/iV. where /9(M'-^) is a 

finite dimension problem and is computable. 

For the sake of the simulation algorithm, besides the convergence issue, we are also 

interested in how we can choose a sequence for iV to make the convergence more efficient. 

Of course, one can let N be any monotone increasing sequence to get the convergence. 

However, some improvement can be made to make the convergence process faster. Let's 

see the following example. Let G'^v denote the discretized and lifted nominal system 

with fast sampling period of T/N, M,\f the corresponding close loop system which is a 

LSI system (see Figure 7.2). 

Let (.4/^.[5i;^, i92/J) be the corresponding system matrices of the discretized sys­

tem. 
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Figure 7.2 Discretization and lifting of the sampied-data system 

.4,, = 

B 
A r'^ J 

i/v = / e^'drBi. Bof^ = / drB2, Jo Jo 

where {A.[Bi. B2]) are the system matrices of G. Notice that matrices Bi/^ and B2/1 

act on different rate signals, say /,v and /i respectively, if N ^ 1. When .V = I. no 

lifting needed. We have G\ and Mi in the following forms respectively: 

fii/i B2h 
4 

• fill + ̂ i/i 

I — DgU Dgl2 . Ml = 

."1 

S21 

cv. Dg2\ Dg22 Ci Dn 

where .4, 5u, 52i,Ci and Du are certain matrices obtained for the closed-loop system. 

Then the impulse response is 

D\,i, Ci 
B\i B\f^ 

B21 
CiA 

fill + 01/, 

B21 
(7.9) 
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Now when N = 2. lifting is needed, and the systems become 

Go = 

-A, 

Cg2 

[ Aj^ ̂ 1/2 B x f 2  ] ^2/1 

r Dgll 0 • ^Jl2 

C g l B l f ^  ^311 C31B2/2 + Dgl2 

[ D 321 0 522 

Mn = 

A 

Ci 

^11 + Bif^ 

B21 0 

Dn 0 

Mi 

\q 

Notice that [A/^Bij^ ^1/2] ^1/2 same rate of signals now. The 

impulse response is 

r/?ii 0 

* * 

r B11 + Af2Bif2 Bif^ 

Boi 0 

B11 + Af^Bifj Bif^ 

B21 0 

C, 1 C, 1 
.4 

* 

(7.10) 

Notice that 

B fi^i /*"' e'UrB 
Jo 

d T B  +  - - - +  ^  d r B  
Jo yinrHI -V, 

( m - D T  

= (/ + e'^3-' + ... + e '^3 

B Avi - (^ + Af^^ + h AJ'^ ') Bf^^. 

(7.11) 

(7.12) 
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where m = ^ is an integer. Therefore II.V/2'II = ||-V/i|| because B\,j^ = ( / + Af^)Bif^ by 

(7.12). Comparing the impulse responses (7.9) and (7.10), we can conclude that ||A/2|| = 

maxfc=i.2 lliV/2 II > II•'Will- It can be shown that UMivJI = maxi<fc<„, ||M,vJ| > ||. 

where m = ^ is an integer, since fii/vj = (^ + + 1" ' 

Therefore we can choose a sequence for .V. {.V'l, No- • • • • -V;. • • •. -Vj, - • •} such that 

.V, < Nj if i < j and ^ is an integer. In this case, the resulting sequence of the ap­

proximate induced norm is a monotonicaliy increasing sequence, meaning this sequence 

converges to the exact induced norm for the sampled-data system from below and con­

verges more efficient than if we just arbitrarily pick .V. 

7.2 An Example and Simulation 

In this section, we will give an example of a tracking problem of a sampled-data 

system to compute the steady-state tracking error subject to system uncertainty. 

.As shown in Figure 7.3, the nominal plant PQ is given by 

The system uncertainty is given as multiplicative uncertainty of the form 

P(.s) = Po(5)(l + l'K,(^)A)-

•-0 

Figure 7.3 .An example: Robust steady-state tracking 
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where the uncertainty is norm bounded with ||A|1 < 0.25. The weighting function 

WT = I. The discrete-time controller KD is designed for the nominal plant PQ to force 

the plant to track the reference input r. a unit step input. 

The discrete-time controller works well for the nominal plant (see simulation in Fig­

ure 7.4). The steady-state tracking error is zero due to the integrator in the controller. 

0.8 

0.6 

0.4 j-

c 0.2 

-0.2; 

-0.4 

-0.6 

Time 

Figure 7.4 Steady-state tracking error: Nominal case 

In the following, we will shown how this sampled-data system performs when system 

uncertainty is considered. First, the steady-state tracking error is computed. Table 7.1 

shows the lower bound (BdLow) and upper bound {BdUp) of the tracking errors ob­

tained by computing the corresponding approximate system at the fast sampling rate of 

T/N. when N = S. 16,32 and 64, respectively. 

One can see from the computation results in Table 7.1, the computation process is 

converging, and the tracking error lies somewhere between .7935 and .8141. This means 
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that this is not a good design for robust tracking since the system will result in an error 

of about 80%. 

Secondly, we do simulation for this system. The uncertainty is given as a gain slider 

in SIMULINK taking values between -0.25 and 0.25 (dash in Figure 7.5). The simulation 

result is shown in Figure 7.5. One can see that the system under this uncertainty at 

least has the tracking error of 66.72%. which is below and close to the result obtained 

by computation. 

Table 7.1: Steady-state tracking error 

II oo
 II N = 32 N = 64 

BdLow .7771 .7863 .7911 .7935 

BdUp .9506 .8704 .8325 .8141 

O.B -

0.6 -

-0.4 -

-0.6 -

_0.8' ' ' « ' ' 
0 10 20 30 40 50 60 

time 

Figure 7.5 Steady-state tracking error: with uncertainty 
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CHAPTER 8 CONCLUSIONS 

In this part, robust tracking for both discrete-time systems and sampled-data sys­

tems has been addressed with the presence of structured norm bounded finite memory 

uncertainty, .\ppropriate steady-state norms, || • for discrete-time and |1 - ||cs for 

lifted continuous-time signals, have been defined and adopted as steady-state tracking 

measures. Based on those steady-state norms, the so-called steady-state norm matrices. 

and have been constructed and then robust steady-state tracking conditions 

are derived in terms of the spectral radius of those matrices. Similar conditions can be 

obtained for general periodic systems and MIMO systems, or multi-tracking systems. 

.A. convergent approximate approach and computation algorithm are given to solve the 

steady-state tracking problem, and an e.xample and simulation are shown as well. 
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PART II 

ROBUST AIRCRAFT PITCH CONTROL 
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CHAPTER 9 INTRODUCTION 

Robust control techniques are applied to the aircraft control. Due to different flight 

conditions, the flight model varies accordingly with certain parameters, such as weight, 

center of gravity, etc. For the purpose of applying robust control techniques, the air­

craft dynamics is modeled as a linear time-invariant system plus uncertainty due to the 

variations. 

"Hoo and y. techniques have been developed as powerful tools in analysis and synthesis 

for system robustness. control is a frequency-domain synthesis theory that was 

developed to deal with plant uncertainty and unknown system disturbances. The 

norm captures the induced operator norm when C2 signals, or bounded energy signals, 

affect the system. The norm, as a measure of the system energy gain, is given by the 

peak value of the transfer function in the frequency domain. Indeed for a stable transfer 

function G{s). the norm is given by l|G||cc = sup^ 16'(i^')l- Dolye [L4j presented 

an earlier state-space solution to the problem. Glover and Dolye [20] treated the 

detailed derivation of the 1-Loc solution for general cases. The results and techniques 

developed in Dolye. Francis, and Tannenbaum [15] have generated more interest in 

applications of methods. 

Based on the control theory, singular values have been developed as //-analysis 

and synthesis tools for the robustness and performance of feedback systems (see [2]). [i 

is defined as a measure of the smallest structured uncertainty that causes instability of 

the closed-loop system, //-analysis gives the level of robustness of the system that can 

be assessed, while //-synthesis determines a controller such that the singular value (//) is 
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minimized. 

The objective of our research is to apply these robust control techniques to optimize 

control system performance when the aircraft model is subject to variations. The prob­

lem focuses on the longitudinal (pitch) attitude control problem when aircraft weight 

and center of gravity are unavailable as control inputs. The weight and center of gravitv 

of the aircraft can vary throughout the duration of a flight as well as from one flight 

to another. These two parameters significantly affect the pitch moment and elevator 

effectiveness of the aircraft. .A. longitudinal attitude robust control algorithm is designed 

to provide consistent performance throughout the flight regime at varying weight and 

center of gravity locations. 
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CHAPTER 10 AIRCRAFT DYNAMICS AND 

PERFORMANCE CRITERIA 

As we mentioned before, the aircraft model varies with parametric variations such 

as weight and center of gravity in our case. 

10.1 Aircraft Dynamics 

Generated from a full si.x degree of freedom nonlinear aircraft model, nine linear 

state space models are given as the dynamics of light commercial aircraft (see [1]). The 

nonlinear model is trimmed under level flight {h = 0). zero longitudinal acceleration 

{U = 0) and zero pitch rate {Q = 0) constraints. With these constraints, the nonlinear 

model is trimmed at three different flight conditions: low-altitude/low-airspeed, middle-

altitude/high-airspeed. and high-altitude/high-airspeed. .A.t each of these three flight 

conditions, three linear state space models were generated: heavy weight at forward eg. 

medium weight at middle eg, and light weight at aft eg. The flight conditions for the 

nine linear models are listed in Table 10.1. 

The resulting nine linear models all have five states, three inputs and si.x outputs. 

States: 

Xi: Theta {6, rad), pitch angle; 

X2: Q (6, rad/sec), pitch rate; 

j*3: U (meters/sec), component of inertial velocity along body X-axis; 

x^: W (meters/sec), component of inertial velocity along body Z-axis; 
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Table 10.1; Linearization points for linear state-space models 

Case # Alt (ft) IAS (knots) Weight (lbs) CG (%chord) Class (wt/cg) 

I 5,000 114 10.000 0.300 Mid/Mid 

43 5,000 98 7.464 0.384 Lt/Aft 

57 5,000 123 11.800 0.228 Hvy/Fwd 

7 20.000 250 10.000 0.300 Mid/Mid 

49 20,000 250 7.464 0.384 Lt/.-\ft 

63 20.000 250 11.800 0.228 Hvy/Fwd 

14 41.000 245 10.000 0.300 Mid/Mid 

56 41,000 245 7.464 0.384 Lt/.\ft 

76 41.000 245 11.800 0.228 Hvy/Fwd 

•Altitude (feet). 

Elevator Deflection [5. deg): 

U Disturbance (meters/sec), longitudinal wind disturbance: 

W Disturbance (meters/sec), vertical wind disturbance. 

Theta {0. deg), pitch angle; 

Q [6, deg/sec), pitch rate; 

:V- (g), normalized acceleration along Z-axis: 

Nr (g), normalized acceleration along X-axis: 

True Airspeed, Tas (knots); 

Altitude (feet). 

Inputs: 

tii: 

"2-' 

"3: 

Outputs; 

U i -

y2-

y3-

y-i-

ys: 

ye-

The aircraft dynamics, along with the elevator actuator dynamics, are shown in 

Figure 10.1. The pitch command ServoCmdD, generated by the outer loop, applies to 
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the aircraft dynamics through the integrator and the servo model, which are given. An 

elevator deflection limit of +/- 5 degrees is imposed on the output of the actuator and 

then applied to the aircraft model. Longitudinal and vertical wind models, the Dryden 

wind models (see [Ij), are first-order and second-order transfer functions respectively. 

Integrator Servo Model Limiter Longitudinal AC 

DelED 
Theta (0> D Cmd 

WGust Vertical 

Alt Ft 
UGust Longitudinal 

Wind 
Model 

6s + 1 625 

STATE 

SPACE 

Figure 10.1 Longitudinal aircraft model with servo motor dynamics 

10.2 Performance Criteria 

The performance criteria are given in the time domain as well as the frequency 

domain. Time responses to step disturbances or commands are compared against three 

given transfer functions. 

I. .As a part of the performance criteria for this problem, a second-order model, 

9 4 
Desired Model: (5) := — 

^Cmd -{- 45 -(- 4 

is given as the desired model from pitch command{ 9 c m d )  to theta ( 9 ) .  .An upper 

bound and lower bound dynamics are also given as second-order systems for the 

performance measurement of the transient and steady-state tracking as well, 

L^pper Bound: 

Lower Bound: 

•s-^ -f- 2.Ss -I- 4 ' 

1.96 

-f- 3.64s -t- 1.96 
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The corresponding unit step responses are shown in Figure 10.2. 

2. The normal acceleration, the third output .V-, shall not exceed 0.4 g for a standard 

pitch maneuver. 

3. The frequency response of the open loop system shall not exceed 4 rad/second 

crossover frequency. No high frequency signal is allowed in the system because 

of consideration of energy consumption in the system and the mechanical linkage 

from the elevator to the control column. 

The performance criteria are listed in Table 10.2. 

Table 10.2: Performance criteria 

Desired Dynamics 4 Desired Dynamics 
S2+4S+4 

Upper Dynamics 4 Upper Dynamics 
S2+2.8J+4 

Lower Dynamics 1.96 Lower Dynamics 
S-+3.64S+1.96 

Normal .Acceleration n. < 0.4G 

Crossover Frequency ^'c ^ 4 rad/sec 
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0.6 

0.4 

O.a 

« 0.6 

2 0.4 

0.8 

§ 0.6 1.96 

3.64s • 1.96 
I 0.4 

Time 

Figure 10.2 Longitudinal attitude control law dynamic thresholds 
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CHAPTER 11 NOMINAL PERFORMANCE 

Before the design of the robust controller for the aircraft at different flight conditions 

and with variations of weight and center of gravity location, we start with the 

controller design for the nominal models, i.e.. models without variations, to study the 

behavior of these nominal models at different conditions. 

11.1 Model Matching 

.A.S stated in the objective of this project, the controlled system should behave simi­

larly to a second-order system, referred to as the desired model. This naturally gives rise 

to "Hcc model matching problem. The model matching problem is to find a controller 

such that the difference of the closed-loop system from the desired system is minimized 

in the Hoc norm. Let 11 DM be the desired transfer function. ) is the closed-

loop system determined by the designed controller A'. The model matching problem 

is to design the controller K such that ^HDM — /^ri9(A')|lcc is minimized. That means 

the maximum magnitude of the transfer function HDM — is minimized in the 

frequency domain. Usually, some weighting functions are incorporated to penalize the 

minimization on certain frequency range of interest. For instance, the tracking perfor­

mance requires the difference of the two transfer functions is small in the low frequency 

range. Therefore . we can use a low-peiss weighting function, W^/ou;(s), for this purpose. 

Then the problem becomes minimizing the quantity of 

W W I^ A H DM -  H r e { K ) ) \ U .  
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11.1.1 Model Matching: Set-Up I 

The set-up of the problem should be handled carefully. For example, a problem 

set-up for model matching is shown in Figure 11.1. In this set-up, the controller (K) 

takes the reference command 'ref' and the aircraft output measurements, pitch angle '0' 

and acceleration 'Nz' ^ its inputs. Notice that the controller does not directly take the 

tracking error as its input. Instead, the error through a low-pass filter is considered 

as a performance measure. .A. controller designed in this way has two degrees of freedom 

for the structure of the controller. 

con I 

Nz wl 

'wind 
w2 

dist 

xon2 

DM 

'du 

Servo 

mom 

Figure 11.1 Nominal set-up I: Model matching 

.A. controller is synthesized using this set-up for the nominal model of middle-altitude 

at medium weight and middle eg (case # 7). .A.s one can see from the system responses 

in Figure .A.l (Appendix A), this design seems good in terms of system's tracking to the 

reference input and the crossover frequency. These criteria are easily achieved by the 

designed controller. However, after careful inspection of the controller designed in this 

way, one can find that the feedback part of this controller, U'L and 6'3, has a very small 

gain and close to zero (see Figure .A.l in .Appendi.x k). The only part of this controller. 
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which plays a role in controlling, is the feed-forward one, i.e.. from reference re/ to 

the control signal u. In fact, the obtained controller acts as an open-loop feedforward 

controller instead of a feedback closed-loop controller. Though the requirements can be 

achieved by this design for the specific model, it is not a good design. Some changes in 

the nominal plant will result in bad responses because this design is not robust at all. 

See Figure .A..2 for an example in .Appendix A. 

11.1.2 A Modified Set-Up for Model Matching 

The set-up in last section can become a useful one by adding two more weighting 

functions Wdei and Wjeii into the set-up (see Figure 11.2). In this way. the performance 

pert 

acc\ 
Nz wi 

dist 

'del 'deli 

DM 

'dis 

'con I 'con2 

Servo 

nom 

Figure 11.2 Nominal set-up I: The modified model matching 

evaluation includes not only the channel from reference ref to error Wg but also the 

channel from pert to error We. The latter one ensures that the controller obtained will 

not be of zero gain in the feedback path. 

The performance measurements in this set-up include: 
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1. The error between the output 0 .  the pitch angle, of the system and the desired 

output from the desired model (DM). low pass weight 05) is chosen to 

ensure the steady-state error to be satisfied. See the bode plot of We in Figure 11.3: 

2. The normalized acceleration. Nz- A constant weight Wa.cc (0.001) is imposed on 

Nz for the normal acceleration requirement; 

3. The elevator deflection and the acceleration. Weights W^oni (0.1) and Wcon-i (O.l) 

are Introduced to penalize the crossover frequency. 

10 -

a 
2, 

I s 
a 
i 
? 

a. 

-60 

-too 
0 01 

Frequency (racVsec) 

Figure 11.3 The bode plot of weight Wg for tracking error 

The input dist is introduced as the measurement noise. The input pert and the 

measure of output of controller u are introduced to ensure the problem is set-up properly 

for the ^-synthesis. 

Controllers are designed for the given nine different models (see [36]). Simulation 

results are shown in Appendix B (see Figures B.l - B.3) for models of medium weight 

at middle eg of all three different flight altitudes. 

1. Low-altitude/low-airspeed at medium weight and middle eg (Case # 1): 
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2. Midclle-altitucle/high-airspeed at medium weight and middle eg (Case 7): 

3. High-altitude/high-airspeed at medium weight and middle eg (Case #14). 

As simulation results show, the feedback parts of the controllers designed in this way 

are no longer zero controllers. The designed controller is evaluated for the corresponding 

nominal model and the performance requirement can be met. 

1. The 0  response falls in the envelope (dots) in the plot except for the initial stage; 

2. Elevator deflection in the transient is small (< 5 deg); 

3. The crossover frequency of the open-loop system frequency response is less than 

the 4 rad/sec restriction. 

From the design experience of nominal models and simulation of the system, it is 

clear that robust control design should be introduced to handle the model variation. 

11.1.3 Discussion and Analysis 

The system should be set up very carefully for the problem. The case of set-up I 

should be avoided. Though the open-loop controller works well on the nominal model, 

the controller is not a good one since the open-loop system is not robust at all. The 

modified set-up avoids this problem because the performance of the transfer function 

from pert to tracking error is also evaluated. 

Notice that the feedback path from the third output iV. to the control signal u has 

a very small gain (see Figure A.3 in .Appendix A). This feedback path does not play a 

big role in system controlling. Therefore, the controller structure can be simplified by 

dropping the N, feedback path, i.e., the controller only takes reference ref and system 

output 9 as its inputs. Figure .^..3 in .Appendix .\ shows the bode plots of controllers 

designed for case # 7 (middle altitude/airspeed at Mid/Mid) with and without .V- as 

the feedback control signal. 
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The order of the resulting controller depends on the order of the nominal system and 

those weighting functions. The higher the order of those functions, the higher the order 

of the controller obtained. For the modified model matching set-up discussed in Icist 

section, one can get a controller with lOth order. Using Hankel norm model reduction, 

one can reduce the controller to 6th order with acceptable performance (See Figure .\.4 

in .Appendix .A.). 

11.2 Desired Model as Prefilter 

In the modified model matching set-up. as many as eight weighting functions are 

involved. This makes the design procedure more complicated. Tuning any weight will 

affect other performance. Besides, the more the weighting functions, the higher the 

order of the obtained controller. 

A simpler set-up of this problem is investigated. In this set-up, the desired model is 

not taken into account for the design stage but will be used ELS a prefilter for the reference 

command after the controller is obtained (see Figure 11.4). The tracking error can be 

kept small if the open-loop gain is large at low frequency range. 

vv7 

yu2 

Servo 

'nom 

Figure L1.4 Nominal set-up II; The desired model as a prefilter 
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In this set-up, the controller (K) takes the tracking error (e) as its input. The number 

of weighting functions drops down to two. The performance measurement includes: 

1. The error between the output 6 .  the pitch angle, of the system and the reference 

command. .A. low paas weight Wr ( ) is chosen to ensure the steady-state error 

to be satisfied. The bode plot of Wr is shown in Figure 11.5; 

2. The controller output u. A weight H-'n (;:^) is introduced to penalize the crossover 

frequency. The bode plot is shown in Figure 11.5. 

Tha Beds Plot Thveed* Ptoiarwn • w(«*TO) 

a 

i 
i a 
I 
« 
I 

J 
I 
f 
s 
I 
£ 

90 

Figure 11.5 The bode plots of weights Wr and H''„ 

The bode plot of the integrator and servo model together is very close to 1 at the 

middle frequency range (see Figure 11.6). Therefore, one can even take the integrator 

and servo model aside at the design stage, and get a simpler system to design and obtain 

a simpler controller. 

Controllers are designed by using this simplified set-up. Simulation results are shown 

in .Appendix B (see Figure B.4 - B.6) for the same models as in set-up I: 

1. Low-altitude/low-airspeed at medium weight and middle c^r (Case ^ 1); 

2. Middle-altitude/high-airspeed at medium weight and middle eg (Case # 7); 
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& 

a 

I 

Figure 11.6 The bode plot of Integrator and Servo 

3. High-altitude/high-airspeed at medium weight and middle c^r (Case 14). 

The resulting controller by this set-up has the order of 6 without model reduction. 

All performance requirements are satisfied by the design. 

11.3 Results 

The design of controllers for the chosen nominal models is carried out based on 

two different system set-ups described as above: the modified model matching and the 

desired model as the prefilter set-up. From simulation results, it can be seen that the 

designed controllers work very well for the corresponding nominal models for which they 

are designed. However, these controllers are not robust and perform poorly against 

other models under the same flight condition. In the following example, model # 1 

(low-altitude/Iow-airspeed at mid/mid) is chosen as the nominal model. The nominal 

controller is synthesized by using the modified model matching and prefilter set-ups both. 

.'\s one can see from Figure 11.7, where the dot lines are the unit step responses of the 

upper and lower bound systems, the response (solid) for the nominal model is fairly good. 
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However, if the same controller designed for model #1 is applied to other two models. ^ 

43 (dash) and # 57 (dash-dot), at the same flight condition (low-altitude/low-airspeed). 

the system responses are not acceptable. For other flight conditions, the situation is 

even worse. Systems may become unstable when the nominal controller is applied to 

other models. 

This is reasonable because the nominal synthesis does not take model variations into 

account. The robustness can not be guaranteed by this synthesis. In the following 

section, the robust control method will be address and the robust controller will be 

designed against model variations. 

r«n« 

Figure 11.7 .Mominal controller: Performance for different models 
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CHAPTER 12 ROBUST PERFORMANCE 

Three different flight conditions at different altitude/airspeed are considered. At each 

flight condition, the robust controller is designed against the model variations of weight 

and central of gravity. This will provide guidelines for selecting the initial scheduling 

control law. 

12.1 Parametric Variations of State-Space Model 

Because the weight and center of gravity appear in the model as real scalars. varia­

tions are modeled as parametric uncertainty. Parameter variations consist of weight (in 

f o r m s  o f  I ' V  a n d  l / V K ) ,  c e n t e r  o f  g r a v i t y  ( X c ^ ) .  a n d  m o m e n t  o f  i n e r t i a  ( l / / y y ) .  

The derivation of the closed-form framework for robustness analysis is given as follows 

by using Linear Fraction Transformation (LFT). The purpose is to reconstruct the state-

space model such that those parameters are considered as uncertainty blocks in the 

general robust problem set-up. Let p, denote one of the varying parameters described 

above. .A. B. C and D are the state-space matrices for the varying model, which is 

linearized in p,. The varying linear model can be represented as the follows: 

.4 B -4o Bo 

C D Co Do 

•4o Bo 

Co Do 

+ 

-F W 

^4,- Bi 

c. Di 

.4, Bv .4-2 Bo .4, Bv 
+  I I W  

.4-2 Bo 
+  I I W  

D, Co D2 
+ 
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+ A' eg 

-1
 

Bz 

Cz Dz 
+ V yy 

-44 B, 

1 
•••

 

D, 

Figure 12.1 shows the system variations in .4 matrix of the state-space model. As 

one can see from the variable dependence table in Appendix C. most entries of .A,, Bi, C, 

and Di are zeros. 

1/W 

Figure 12.1 System variations (.4 matrix) 

In order to reduce the complicity of this model, those matrices each can be written 

as the multiplication of two full rank matrices. For e.xample. [.Ai Bi\ has rank 3 and can 

be represented as follows. 

[A. B.l 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 032 0 0 0 0 
= 

1 0 0 

«41 0 0 0 0 0 0 1 0 

0 0 «53 0 0 0 0 0 1 

0 032 0 0 

0 0 0 

0 0 0 

:= F, [G, ff,]. 
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Therefore, we can rewrite 

^^[.41 fill = FilVF/alfG'i H , \ .  

Let F,. Gi and //, be the corresponding resulting matrices for [.4,. i5i]. Similarly for 

[C, Di\. let Ei be the corresponding matrix similar to F,. Then, we have 

o
 

1 

CQ 

U J O 1 
+ E 

Fi 

F. 

p 
( \ 

X 

Gi 
1 « , 

The purpose to do this rearrangement is to pull out the varying parameters from the 

system. To do this, we consider y,- and c, to be the input and output respectively of 

a linear time-invariant state-space model which has variation pi as the feedback block 

(may be a matrix) as shown in Figure 12.2. The linear time-invariant model is given by 

Int 

lAV 

^0 ^0 ^1 ^2 ^3 ^4 
^0 ^0 ^ ^ 

Figure 12.2 An equivalent state-space representation 
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/ . N 
X 

1 

o
 Bo Fi F2 F3 F, 

/ 
X 
\ 

y Co Do El E2 Ez E4 u 

-1 H, 0 0 0 0 t'l 

-2 G'2 H2 0 0 0 0 V2 

^3 Gz 0 0 0 0 1'3 

^ J G\ 0 0 0 0 
I / 

In the following, we will use Linear Fraction Transformation to rewrite the structure 

of the variation blocks. This may be done for various reasons: 

1. To normalize the parameter variation: 

2. To express I J W  in terms of 8^: 

3. To express in terms of 5i^^. 

The parameter p, is considered as a variation around its nominal value and the 

variation is scaled to unity Si by the factor A',. Let pi = where j5,| = I. 

In our Ccise. parameter variations appear both in the form of p, and l/p,. As shown 

in Figure 12.3, using Linear Fraction Transformation, we can express the parameter p,-

and I/pi in the form of unity parameter <J,-. 

Figure 12.4 shows the overall rearrangement of the state-space model which combines 

the above two steps. 

In this case, we need to rewrite our equations in terms of u', and r',. denotes 

the nmth block of the transfer matrix J' in Figure 12.3. 
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J' 

J' 

Figure 12.3 Liaear fraction transformation 

P.I [A, B,] P.I [A, B,] 

Figure 12.4 LFT modeling for parameter variations 
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Then the overall system is given as follows: 

/ . \ 
i -4O + ELI^.42^. Bo+T.UFiA2Gi F,,n, F,Jl 

/ \ 
X 

y Co Do E, E2 ^3 E, u 

- I Jl.Gx J I 2 H X  0 0 0 

2 JhG, 0 J'h 0 0 v'2 

t 
- 3 JhHz 0 0 A 0 '•''3 

J'uG, 0 0 0 /*• •''11 

The controller designed later using multiplicative uncertainty model will be evaluated 

with this parametric model in the /i-analysis. For the analysis purpose, the structure 

singular value is computed, where the uncertainty is treated as repeated 1 x 1 blocks 

and as complex scalars. 

12.2 Plant Variation in Frequency Domain Set-Up 

.•\n alternative treatment of system uncertainty is the multiplicative model. In this 

set-up. the uncertainty is treated as a multiplicative one. i.e.. 

G i { s )  =  [ /  + ( 1 2 . 1 )  

where G'o is the nominal model, G\s are all the possible models in the same flight 

condition (altitude/airspeed). In the following design, the medium weight at middle eg 

models, which are the middle plots (dash) in Figure 12..5, are chosen as the nominal 

models G'o for each of three flight conditions. 

The uncertainty A is set to have norm of I. In this way, the corresponding magnitude 

of weight on the uncertainty can be obtained bj' 

\^Vadd{j'^)\ = max 
Gi[ji^) — Go^jui) 

Goij'. 
(12.2) 
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Figure 12.0 Bode plots of three models for three flight conditions 

which is computed point by point in the frequency domain. Using "fitmag" routine in 

M.A.TLAB, one can choose the order of the fitting function for the magnitude data and 

get a stable minimum phase transfer function from the obtained data. The following 

weighting transfer functions are obtained for the three different flight conditions. See 

.Appendix D for bode plots. 

1. Low altitude: 

0.17135® + l.lS77s' + 1.6S25S'* + 1.20S4s3 + 0.14718^ + 0.0444s + 0.0020 

+ 2.4472s- + :3.2401s'« + 1.4224^3 + 0.2243^2 + O.O6O65 + 0.0022 
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2. Middle altitude: 

0.2786^® + :3.S195s^ + 17.81123" + 32.35625^ + 1.24595^ + 0.16705 + 0.0038 

+ 2.6260s5 + I3.40421s-« + 19.22415^ + 0.8423s2 + 0.28085 + 0.0042 

3. High altitude: 
0.90365^ + O.352I52 + 0.02415 + 0.0028 

53 + 0.242452 0.01805 + 0.0030 

This uncertainty model is used in the following design set-up for robust synthesis. 

The set-up for robust design follows the prefilter set-up discussed in the nominal 

performance case (see Figure 12.6). .\s in the case of the nominal design, the gain of 

the 

A 

'wind 

Servo 
nom 

Figure 12.6 Set-up for robust synthesis: Multiplicative uncertainty 

feedback control path for iV-, if it is considered as a feedback control signal, is very 

small. Therefore, the set-up without N~ feedback is used later for robust synthesis. The 

performance measurement includes: 

1. The error between the output 0, the pitch angle, of the system and the reference 

command. A low pass weight Wr () is chosen to ensure the steady-state error 

to be satisfied: 
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2. The controller output u. A weight Wn is introduced to penalize the crossover 

frequency: 

3. The system output 9. The weight, W^dd-, for uncertainty is used. 

Notice that the third model (Hvy/Fwd) at high altitude is relatively far away from 

the other two models (see Figure 12.5). Therefore, the size of the system uncertainty is 

relatively large in this case. .As one can see from the simulation results (Figure 12.7). the 

robust performance at high altitude is not as good as that at other two flight conditions. 

The reason is that the open-loop system needs to have relatively large gain at low fre-

Th«tMRe6u«}: Attuda - UufeeteatiM UotM (Pr«ftl«r) Op«rv-<^ap H191 ASlud* - Mut«acMiv« Med*t (Pr«M«r) 

s 

i 
I 3 

J 

ts 

T>«<a(nata«n High Attuta - Uufeip*eaav« Modal Op«n-tooo SyMwrKRoeust): AJUusa - UuAefecanv* Uodtl (PraMarl 

I 
i 
I J 
I 

Y5 

Figure 12.7 Crossover vs. performance (high-altitude/high-airspeed) 
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quency for the third model (Hvy/Fwd) in order to satisfy the tracking performance re­

quirement. However, for other two models, this will result in a larger crossover frequency 

which exceeds the limit. See simulation results in Figure 12.7. The first two show the 

designed controller meets the crossover frequency requirement for all models, but the 

performance for the third model (Hvy/Fwd) is not as good as the second case, which 

allows higher crossover frequency. .A.ay improvement in the design for the third model 

(Hvy/Fwd) will result in the increase of the crossover frequency. This design limitation 

is because the third model is far away from the other two. 

See .A-ppendix E for all simulation results. Two singular value plots are shown for 

each case. The left bottom one is the [j plot for the multiplicative uncertainty model 

(synthesis model). The right bottom one is for the parametric model with the same 

controller designed using multiplicative model. 

.A.S one can see from the simulation result in Figure E.4 of .Appendix E. the robust 

controllers (higher than lO"* order) can be reduced to o"' order controllers and can still 

work fairly well. 

12.3 Robust Design vs. Nominal Design 

The robust stabilit}' and performance with variations of weight and center of gravity 

can be achieved by robust controller design in the same flight condition, which is not 

true for nominal controller design. The comparison of robust controller and nominal 

controller is shown in Figure 12.8. For low-altitude/low-airspeed flight condition, plots 

of system responses are shown for robust controller, nominal controller using modified 

model matching set-up and controller using prefilter set-up respectively. 

One can see that robust controller outperforms the nominal controller. For the 

middle-altitude/high-airspeed case, systems even become unstable when the designed 

nominal controller is applied to other two models in the same flight condition. 
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CHAPTER 13 CONCLUSIONS 

The aircraft dynamics has been discussed. The nominal controller design is 

addressed first. Two synthesis set-ups have been compared. For the model matching 

approach, the problem needs to be set up properly to avoid obtaining an almost open-

loop controller. 

Due to variations of weight and center of gravity in the aircraft model, robust con­

troller is needed to consider those variations. A multiplicative uncertainty model for 

different flight conditions (three different altitudes/airspeeds) is derived for robust syn­

thesis. The robust controller is synthesized using MATLAB ii toolbo.K for each flight 

conditions. The resulting controller provides good robust performance against the sys­

tem variations. Future work need to be done on gain scheduling to handle the variation 

due to different flight conditions. 
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CHAPTER 14 GENERAL CONCLUSIONS 

Two robustness issues have been addressed in this dissertation: robust steady-state 

tracking for sampled-data systems and robust aircraft pitch control 

Two different steady-state norms are defined as the robust performance measures for 

steady-state tracking. Robust steady-state tracking problem is explored by first solving 

robust steady-state tracking for periodic discrete-time systems. Then by using the lifting 

technique for periodic systems and using an appro.ximation approach, e.xact conditions 

for sampled-data systems are found in the form of spectral radius of so-called steady-state 

norm matrix. This nonnegative matri.x is defined on the system induced norms and the 

corresponding steady-state norms. .A. computation algorithm is given by a converging 

approximation procedure. .As one possible future work, the tools of Ci/ly controller 

design and robust steady-state tracking performance analysis can be combined as an 

analysis and sj^nthesis tool for the robust steady-state tracking problem. The robust 

steady-state tracking conditions developed in this dissertation are given as the spectral 

radius of certain nonnegative matrix, which consists of system induced norms. The 

spectral radius of the nonnegative matri.x is a monotonic function of the elements in the 

matrix. These elements, induced norms and steady-state semi-norms, can be minimized 

by the £i//i controller design. 

In the second part, aircraft models with parametric variations of weight and center 

of gravity are discussed and used for robust analysis. .A multiplicative uncertainty model 

is derived and adopted as the synthesis set-up for the T-L^ control design by using the 

powerful M.ATL.AB ^-analysis and synthesis toolbox. 
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In general, when considering a model matching problem, we should carefully set up 

the problem, especially when all the zeros of the plant are stable zeros. For the nominal 

set-up I in Figure 11.1. the controller can simply designed a^ a open-loop compensator, 

which consists of the desired model and the inverse of the plant. Though performance 

criteria can be achieved by this design for the specific model, it is not a useful design. 

Some changes in the nominal plant will result in bad responses because this design is 

not robust at all. 

As part of the design criteria, an elevator deflection limit of +/- o degrees is imposed 

on the output of the actuator, and the normal acceleration, the third output A'-, shall 

not exceed 0.4 G. These requirements can easily achieved. The output. N^, as a feedback 

measurement does not play an effective role in system controlling. Therefore, we do not 

need take iV, as the feedback measurement. 

In each flight condition, aircraft is controlled by one robust controller. Gain schedul­

ing should be developed only for variations due to different flight conditions. For the 

high altitude case, due to the system variations and performance criteria limitation, one 

controller can not achieve the control task. In order to achieve better performance for 

the third model (Hvy/Fwd). we need to make a large gain of the open-loop system at 

low frequency. However, for other two models, this will results in a larger crossover 

frequency which exceeds the limit. This is the tradeoff we have to deal with between 

system performance and system crossover frequency. 



www.manaraa.com

109 

APPENDIX A SET-UP: DISCUSSION AND ANALYSIS 

T)wa(Nam««0 Udd* ABtud* M (MeM Uaietmgi OvAMMrMNemraA: Midi** AMud* t UMid iMod«l Uuom) 

a -^2 

30 

ConcrefartNofnnaO; Middto AMuda at UiMla} (PJodal MaietwiQ) 

FnMUt FimUI U3 

-60 

>100 : 
-<so I 

•300 . 
-2S0 

-300 
; 

Op«>H.eap SyftwiMNomnaO: Mrtto AKMud* at UslVid (MoM UaKfwtg} 

200 

100 

.too 

-zoo 

TOOOO tOO(BO0OO T toooo lOOSOMO 1 
Ff«qu«ney (rad'sK) 

i 
I 3 
I : 
I 

TOOOQ TOOOOOOOQ 
Ffaquancy ((•d'Mel 

Figure A.l Model matching I: Small controller in feedback path 
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TiMtKNanwM Cenrelw Svn«M«*d m UHMUt Ifidda AUuf (Uodat Matetwg) 

Figure A.2 Nominal controller (synthesized at Mid/Mid) vs. 
different models (Hvy/Fwd & Lt/Aft) 
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Figure A.3 Feedback control with iV, vs. without iV; (case -j^l) 
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Figure A.4 Reduced 6th order controller (case ^7) 
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APPENDIX B NOMINAL PERFORMANCE 

Modified model matching set-up: low-altitude/lovv-airspeed at Mid/Mid (^^1) 

ThawNommaA: Low Attu»« M UidUM (Mo(M MMeTwiq) OaAMtinHNemnaO Cow AMud* at KMiMd (Mod*! UuefwiQ) 

CsrtreitflNaniaiai): tow AXud* at UOIUwa (Modal Uaietwtg) 

float Ui *mm UZ 

0D«v4.aco SyttamtNomraft: Low AUuda al UxlVa} ilioiM UiMOWig} 

100OOIOSM 
Fraguaney (fad/iae) Praquaney (radTMC} 

Figure B.l Nominal case: Modified model matching (case #1) 
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The state-space representation (A'^, A'g. A 'c-A'd ) of the designed controller K at 

Low Altitude/Airspeed (Mid/Mid #1): 

A-.4 = 

Columns I through 6 

-4.47.53e-01 -2.9494e+03 -2.5804e+06 8.301Se-f05 3.0491e-h05 4.6724e-{-02 

-6.S797e-01 -7.2595e+03 -6.3212e+06 2.0334e-F06 7.4686e-H05 1.1445e-F03 

0 l.OOOOe+OO 1.9232e-04 2.5723e-02 0 0 

0 3.oSS7e-04 -4.r243e-05 -2.r243e-f00 l.OOOOe-i-00 0 

0 6.6729e-03 -3.6926e+01 -2.2556e+00 -6.01.5Se-0I 6.0S02e-03 

0 -3.9400e-03 2.6572e-|-00 1.0905e-|-01 -9.929 le-f-00 -7.18.59e-03 

0 2.9S61e-02 -4.5622e+01 -9.2047e-i-01 6.0963e-i-01 -1.6270e-01 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 3.2139e-05 -2.6992e-03 2.9922e-f00 0 0 
I'olumns 7 through 10 

-1.62.53e+03 1.0S22e+04 -1.96o0e-|-02 l.o470e-l-04 

-3.9S12e+03 2.650Se-t-04 -4.S134e-|-02 3.7894e-|-04 

0 -7.7126e-19 7.7126e-19 -6.9100P-07 

0 1.5080e-I7 -1.50S0e-17 2.22S9e-0o 

-2.3172e-02 1.6330e-16 -I.6330e-16 -1.8510e-06 

2.0715e-01 -4.5247e-16 4.5247e-16 -2.949Se-03 

-9.2092e-01 3.529 le-17 -3.529 le-17 4.9745e-04 

0 -5.So79e-01 1.4142e-|-00 0 

0 -l.4142e+00 -3.4142e-h00 0 

0 8.4090e-01 -S.4090e-01 -3.4004e-02 
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[<B = 

0 -4.3254e+00 

0 3.3059e-02 

0 -3.7993e-03 

0 3.1375e-01 

0 3.33150-01 

0 -3.0407e+00 

0 1.3365e+01 

-7.1160e+00 0 

-7.1160e+00 0 

0 S.0205e+00 
Ac = 

Columns 1 through 6 

-1.2954e-01 -S.5373e+02 -7.4690e+05 2.4029e+05 S.S257e+04 1.3525e+02 

Columns 7 through 10 

-4.7045e+02 3.1324e+03 -5.6S79e+01 4.4779e+03 

[\D = 

0 0 
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Figure B.2 N'ominal case: Modified model matching (case #7) 
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The state-space representation {K'a, k'g. R'c-of the designed controller K at 

Middle Altitude/Airspeed (Mid/Mid ^^7): 

1<A = 

Columns I through 6 

-1.6727e-01 -2.5407e-h03 -2.0689e-F04 2.3807e-f-03 3.780Se-F02 

-L4871e-03 -6.25S2e-F03 -5.1303e-f04 -5.75S6e-l-03 9.2610e-F02 

0 l.OOOOe-hOO 3.5692e-04 5.1374e-02 0 

0 3.0360e-03 -1.52Sle-04 -3.715Se4-00 l.GOOOe-fOO 

0 o.6994e-02 -1.8081e-F02 -6.900Se-|-00 -1.0736e4-00 

0 -•5.7454e-03 -1.9425e-|-00 4.3171e-}-00 -2.2673e-f00 

0 o.903Se-01 -2.321Se-f02 -4.6677e-f02 1.7403e-h02 

0 0 0 0 0 

0 0 0 0 0 

0 6.9606e-06 -o.2325e-03 o.3o47e-02 0 
Columns 7 through 10 

-8.4120e-t-00 3.3016e-h01 -3.SS0Se+00 •5.935 le+01 

-2.0752e-f01 S.0S71e-f01 -9.o059e-f00 1.4539e+02 

0 4.4704e-19 -4.4704e-19 -1.3395e-06 

0 -1.2925e-17 1.292.5e-17 4.35S6e-0o 

-9.2822e-02 -6.6294e-17 6.6294e-17 -1.2598e-07 

4.0667e-02 -2.2074e-16 2.2074e-16 -2.o572e-02 

-1.7426e-|-00 -4.2864e-15 4.2864e-15 1.546 le-03 

0 -o.S579e-01 1.4142e-|-00 0 

0 -1.4142e^-00 -3.4142e+00 0 

0 8.4090e-01 -8.4090e-01 -5.9040e-04 

0 

0 

3.S7o Le-03 

-9.;3.56;3e-02 

0 

0 

0 
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Kg = 

0 -4.3325e+00 

0 l.o076e-01 

0 -7.587Se-03 

0 .5.4S81e-01 

0 1.0192e+00 

0 -2.0860e+00 

0 6.8922e+01 

-7.1160e+00 0 

-7.1160e+00 0 

0 8.454.5e+00 
= 

Columns 1 through 6 

-4.84ISe-02 -7.3o42e+02 -o.9S8oe+03 6.8061e+02 l.0944e+02 l.7429e-01 

Columns 7 through 10 

-2.4523e+00 9.5565e+00 -I.l233e+00 I.71S0e+01 

Ad = 

0 0 



www.manaraa.com

l i s  

Modified model matching set-up: high-altitude/high-airspeed at Mid/Mid (#14) 
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Figure B.3 Nominal case: Modified model matching (case #14) 
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The state-space representation (A'4, A's, A'c-A'o) of the designed controller K at 

High Altitude/Airspeed (Mid/Mid #14): 

A-.4 = 

Columns 1 through 6 

-1.6677e-01 -L2749e-t-04 -1.2312e+05 1.9308e+03 3.5925e+02 

-2.5463e-04 -3.1259e+04 -3.022 le+05 4.6525e+03 S.799Se-h02 

0 1.0013e-|-00 3.S64Se-04 l.S43oe-01 0 

0 4.0256e-01 -o.4S33e-04 -L6370e+01 l.OOOOe-FOO 

0 1.0627e-|-01 -1.35o2e+03 -L32S9e+02 -6.9723e-01 

0 -1.4524e-|-00 -3.90S2e+00 o.76Soe+01 -3.693Se+00 

0 9.41SSe+01 -1.74ooe+02 -3.49-5 le+03 2.31l4e-|-02 

0 0 0 0 0 

0 0 0 0 0 

0 7.7726e-0o -o.6S94e-04 .5.S929e-03 0 

Columns 7 through 10 

-4.o674e-|-00 2.72956+01 -4.5o6oe+00 o.4370e-i-01 

-l.llSSe+01 6.6So9e+01 -1.116le+01 1.331SeH-02 

0 -3.185oe-l9 3.I.S.5oe-l9 -1.4o6oe-07 

0 9.4752e-19 -9.4752e-l9 4.3623e-0o 

-5.9996e-02 -1.6663e-17 1.6663e-17 -4.7922e-0S 

1.057oe-02 -5.9145e-16 5.914.5e-16 -2.1247e-02 

-l.:393Se-t-00 -l.o016e-lo l.o016e-1.5 1.7199e-03 

0 -o.So79e-01 1.4142e+00 0 

0 -1.4142e+00 -3.4142e+00 0 

0 8.4090e-01 -S.4090e-01 -5.9442e-04 

0 

0 

4.46:3:3e-03 

0 

0 

0 
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0 -4.;3242e+G0 

0 7.9960e-01 

0 -2.7228e-02 

0 2.4177e+00 

0 1.9628e+01 

0 -9.96S2e+00 

0 .5.1619e+02 

-7.1160e+00 0 

-7.1160e+00 0 

0 S.4616e+00 
Ac = 

Columns 1 through 6 

-4.S273e-02 -3.6905e+03 -3.5638e+04 o.5042e+02 1.0399e+02 1.3S40e-01 

Columns 7 through 10 

-1.3220e+00 7.9007e+00 -1.3189e+00 1.5738e+0I 

A'D = 

0 0 
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Prefilter Set-Up: low-altitude/low-airspeed Mid/Mid (#1) 
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Figure B.4 Nominal case: Prefilter set-up (case ^^1) 
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The state-space representation (A'.4, A's, A'c: A/j) of the designed controller K at 

Low Altitude/Airspeed (Mid/Mid #1): 

A'.4 = 

0 l.OOOOe-l-00 0 0 0 0 

-6.3101e+03 -I.o442e-F03 -1.0152e+00 4.4108e-h00 9.S324e+01 1.0415e-h01 

4.4425e+02 l.Ollle+02 6.62S4e-02 -1.1181e-01 -7.0731e-i-00 r.4925e-01 

r.7972e+03 -l.S460e-t-03 -1.4244e+00 4.5o69e+00 1.2147e-f02 1.2S67e-(-01 

0 0 0 0 -2.0000e-0l 0 

1.0680e+06 2.6126e-|-05 1.7286e-|-02 -7..5048e+02 -1.6642e+04 -L7729e-}-03 
Ab = 

0 

0 

0 

0 

4.18/ 3e-l-00 

0 
Ac = 

4.4619e+04 1.09loe-t-04 7.2217e+00 -3.13o3e+01 -6.9o26e-f02 -7.364Se4-01 

Ad = 

0 
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Prefilter Set-Up; midclle-altitude/high-airspeed Mid/Mid (#7) 
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Figure B.o Nominal case: Prefilter set-up (case #7) 
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The state-space representation {K_\, KB , t\C-  I\D ) of the designed controller K at 

Middle Altitude/Airspeed (Mid/Mid 

A'.4 = 

l.OOOOe+OO 0 0 0 

-:3.194Se-f-04 -4.36316-1-03 -1.0197e-h00 3.2349e-f01 

0 0 

6.1935e-t-02 9.066Se+01 

-3.o392e-f02 -4.9252e-t-01 -2.4600e-02 3.9011e-01 6.67l2e-|-00 9.7661e-01 

-4.1021e-h04 -5.426Se-F03 -1.4079e-|-00 3.9913e-f01 

0 0 0 

7.9o26e-|-02 l.l642e-t-02 

-LoOOOe-Ol 0 

l.o079e-t-05 3.o3S3e-|-01 -I.r21oe-f03 -2.1410e-f04 -3.1442e+03 

-2.S422e-14 

1.1044e-|-06 
KB = 

0 

0 

0 

0 

7.1S10e+00 

0 
Kc = 

4.6I37e-f04 6.2994e-f03 1.47S2e-|-00 -4.6851e-|-01 -S.9444e-|-02 -1.3094e-f02 

KD = 

0 
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Prefilter Set-Up: high-altitude/high-airspeed Mid/Mid (#14) 
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Figure B.6 Nominal case: Prefilter set-up (case #14) 
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The state-space representation {K 'a, Kb, h'c, ho) of the designed controller K at 

High Altitude/Airspeed (Mid/Mid #14); 

A'.4 = 

0 l.OOOOe+00 0 

-l.lS91e-h04 -1.3016e+03 -2.01ole-01 

•7.447Se-f00 -I.92o6e-02 -4.41I9e-t-01 

•l.o;306e+03 6.3707e-f01 -1.3S28e-01 

0 0 

0 0 0 

3.o329e+00 S.9473e4-02 1.1331e-f-02 

2.0943e-02 2.oS19e+00 3.2697e-01 

-9.313oe-01 l.lol6e-t-02 I.4o83e-|-0I 

0 -l.OOOOe-01 0 

.5.9997e-|-03 9.4997e-01 -L6o70e-t-01 -4.126oe+03 -o.32oSe-|-02 

0 

o.4S42e-F04 
As = 

0 

0 

0 

0 

2.3937e+00 

0 
Ac = 

2.2911e+03 2.o065e+02 3.96S7e-02 -6.9226e-01 -1.7239e+02 -2.IS32e-|-01 

Ad = 

0 
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APPENDIX C VARIABLE DEPENDENCE TABLES 

Table C.l: The variable dependence of matrices .4 and B 

k I 2 3 4 h B 1 2 3 

1 - - - - - L - - -

2 - ^ y y  ^ l ^ y y  A'cj. 1/^yy - 2 Acj, ^ / ^ y y  X c g .  l / I y y  A'cgr ^ / t y y  

3 - W .  l / W  W .  i / W  W .  l / W  - 3 l / W  l / W  l / W  

4 W i / W  \ / w  l / W  - 4 l / W  l / W  l / W  

5 - - w  - - •5 - - -

Table C.2: The variable dependence of matrices C and D 

c 1 2 3 4 5 D 1 2 3 

I - - - - - 1 - - -

2 - - - - - 2 - - -

3 - - - - 3 - - -

4 - W - - - 4 - - -

•5 - - - W - •5 - - W 

6 - - - - - 6 - - ' 
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APPENDIX D PLOTS OF WEIGHTING FUNCTIONS 

T>t*Bed«PlotofW«^W«ddanUneartar«y<LowAMud«) T>M8ed*Plo(afW«i^WaddcnUne«ftu«viUtt<«Anu)«i 

1 
i 
I 
3 
I 
I : 

9 100 

Th* Bed* Ptat of Wadd on UnewWy (Hi^ AUud*l 

i 

i 
£ 

Figure D.l Weights for multiplicative uncertainty (three flight conditions) 



www.manaraa.com

129 

APPENDIX E ROBUST PERFORMANCE 
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Multiplicative Uncertainty; System Responses and /i Analysis (Low Altitude) 

r* r» 
UtaMtCwcfci UBw-iaeeSfWewflaeMii [in'Miili i iinriiMiii 

I 
I -u 
I "r 
J 

ifaMaa 

001 ei 10 <00 

I 

fiwncf IMTMO 

Figure E.l Robust synthesis: Low-altitude/lovv-airspeed 
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The state-space representation {R 'A , K 'B- o f  t l i e  d e s i g n e d  r o b u s t  c o n t r o l l e r  

K at Low Altitude/Airspeed: 

/V .4 = 

Columns I through 6 

-I.o2.56e-f02 -2.3028e-01 -2.813Se-01 -l.6813e-|-03 0 0 

2.302Se-0l -l.ll0.5e-02 -2.r271e-01 1.2591e+G0 0 0 

-2.Sl38e-01 2.r27le-01 -l.9604e-02 -l.56G9e-t-00 0 0 

-L9396e-34 -l.4526e-37 -1.8007e-37 4.495Se-22 l.OOOOe-hOO 0 

3.S052e-02 -1.4475e-01 -4.2820e-01 -3.1211e-F03 -3.4116e-f02 -4.5884e-02 

-2.7373e-03 1.0413e-02 3.0804e-02 2.1484e-|-02 1.4570e-|-01 -3.4477e-03 

4.7010e-02 -1.7883e-01 -o.2901e-01 -3.S575e-f03 -3.o977e-|-02 -2.2690e-01 

-3.7797e-26 -2.S306e-29 -3.509 le-29 0 0 0 

-3.S643e+00 1.4700e-f01 4.3486e-h01 3.1696e-|-0.5 3.4.5S5e-f04 •5.2772e-i-00 

7.3319e-33 5.4908e-36 6.8068e-36 1.6o30e-f00 0 0 

4.9347e-33 3.6956e-36 4.o814e-36 1.7778e4-01 0 0 

-6.011Se-32 -4.o022e-3o -o.5813e-3o -4.o347e-|-01 0 0 

-l.S251e-31 -l.3668e-34 -1.6944e-34 -l.61S9e-f-01 0 0 

-2.1625e-3l -l.619.5e-34 -2.0076e-34 -3.240.3e-h00 0 0 

2.236Se-31 1.6751e-34 2.0766e-34 -1.0919e-|-01 0 0 

-•5.30S7e-18 -3.9756e-21 -4.9285e-21 -7.5079e-|-00 0 0 

-6.9464e-18 -5.20216-21 -6.4490e-21 -2.0630e-01 0 0 

-S.5426e-19 -6.397.5e-22 -7.9309e-22 4.9271e-01 0 0 
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Columns 7 through 12 

0 5.85o9e-23 

0 -7.3464e-26 

0 1.4230e-27 

0 1.996.5e-36 

2.3227e-01 o.4616e-t-00 

1.887Se-01 -3.92S9e-01 

-6.0533e-01 6.7474e+00 

0 -2.0000e-01 

2.5942e-l-01 -5.546oe+02 

0 -2.6916e-34 

0 8.624 le-34 

0 -4.1427e-33 

0 -1.6676e-33 

0 9.1362e-34 

0 -7.6273e-33 

0 -3.o386e-lS 

0 -4.4899e-lS 

0 1.1371e-18 

0 

0 

0 

0 

5.053Se-01 

-3.63o5e-02 

6.2436e-01 

0 

o.7324e+01 

0 

0 

0 

0 

0 

0 

0 

0 

0 

4.943 le+00 

-3.7019e-03 

4.589le-03 

6.3934e-36 

-1.6129e-0l 

l.l603e-02 

-1.9926e-01 

L.2459e-27 

1.63S0e+01 

-4.o432e-04 

-2.3173e-01 

3.800 le-02 

9.S310e-03 

1.849 le-03 

•5.S715e-03 

1.7499e-19 

2.2S97e-19 

2.S158e-20 

-5.3162e+01 

3.9813e-02 

-4.935.5e-02 

-6.8759e-35 

l.7443e+00 

-l.254Se-0l 

2.1549e+00 

-1.3399e-26 

-1.7714e+02 

2.3173e-01 

-5.4863e-02 

2.0592e-01 

9.0920e-02 

1.926 le-02 

6.S997e-02 

-l.SS19e-lS 

-2.462.5e-18 

-3.02S4e-l9 

1.3.560e+02 

-1.01-5-5e-01 

L25S9e-01 

1.7-539e-34 

-1.2o71e-f00 

9.0429e-02 

-I.oo30e4-00 

3.417Se-26 

1.2766e+02 

-3.S001e-02 

2.0o92e-01 

-9.9373e-01 

-o.562oe-01 

-1.2S32e-01 

-o.ll66e-01 

4.S004e-lS 

6.2S13e-lS 

7.7247e-19 



www.manaraa.com

133 

Columns 13 through IS 

4.84126-1-01 9.6S986-hOO 

-3.62556-02 -7.25676-03 

4.49456-02 8.99596-03 

6.26156-35 1.25336-35 

2.69956-01 5.99836-02 

-1.94206-02 -4.31506-03 

3.33516-01 7.4105e-02 

1.2202e-26 2.4423e-27 

-2.7415e-|-01 -6.09166+00 

-9.8310e-03 -l.S491e-03 

9.09206-02 1.92616-02 

-5.5625e-01 -1.28326-01 

-4.5960e-01 -1.32626-01 

-1.32626-01 -4.75446-02 

-8.10086-01 -8.13116-01 

1.71386-18 3.43026-19 

2.24256-18 4.48846-19 

2.75786-19 5.51986-20 

3.26.53e+01 

2.4453e-02 

-3.0314e-02 

-4.2233e-35 

-7.017Se-01 

o.048.5e-02 

-S.6701e-01 

-S.2299e-27 

7.1270e+01 

.5.871.5e-03 

-6.S997e-02 

.5.1166e-01 

S.lOOSe-01 

S.1311e-01 

-8.9101e-01 

-l.loo9e-18 

-l.ol25e-lS 

l.S601e-19 

S.4686e-19 

o.3149e-l6 

-3.7203e-16 

6.S679e-24 

-3.6240e+01 

2.6070e+00 

-4.4773e+01 

-7.1054e-15 

3.6804e+03 

-1.097oe-21 

3.6469e-21 

-1.769oe-20 

-7.84506-21 

2.85636-21 

-3.10816-20 

-2.7104e-t-00 

1.14826-01 

-1.3463e-01 

6.342le-22 

3.98036-19 

-2.7861e-19 

5.14.336-27 

6.9586e-01 

-5.0058e-02 

S.5969e-01 

0 

-I .066S6-|-01 

-8.21936-25 

2.73116-24 

-1.32526-23 

-5.87556-24 

2.13916-24 

-2.32776-23 

-1.18056-01 

-1.11926-02 

2.12826-01 

7.86216-22 

4.93436-19 

-3.45396-19 

6.37616-27 

1.04906-F00 

-7.5465e-02 

1.29606-F00 

0 

-1.06546-f02 

-1.01896-24 

3.38576-24 

-1.64286-23 

-7.28376-24 

2.65186-24 

-2.SS55e-23 

-1.4226e-01 

-2.12816-01 

-1.94686-02 
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/vg = 

7.52I9e-18 

4.7208e-lo 

-3.3045e-15 

6.1002e-23 

-2.77.56e-22 

6.1964e-22 

-o.60S5e-21 

3.l097e+02 

0 

-9.74S5e-21 

3.2392e-20 

-1.57176-19 

-6.96S6e-20 

2.53706-20 

-2.7607e-l9 

-1.0187e-h00 

-2.7992e-02 

6.6S53e-02 
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Ac = 

Columns 1 through 6 

-8.2S45e-02 3.1oloe-01 9.3227e-01 6.7952e+03 7.4146e+02 1.1314e-01 

Columns 7 through 12 

-o.5615e-0I -LlS91e+01 -1.1003e+00 3.oll6e-01 -3.7976e+00 2.736Se+00 

Columns 13 through IS 

-o.S773e-0l -l.3059e-01 1.5279e+00 7.8902e+01 -l.ol50e+00 -2.2839e+00 

KD = 

0 
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Multiplicative Uncertainty: System Responses and fj, Analysis (High Altitude) 

Figure E.2 Robust synthesis: High-altitude/high-airspeed 



www.manaraa.com

The state-space representation (A'4, A'b, A'c. A'o) of the designed robust controller 

K at High Altitude/Airspeed: 

KA = 

Columns 1 through 6 

-1.8847e-h02 -3.04r2e-01 2.2977e-|-00 2.3200e+03 0 0 

3.0412e-01 -S.o296e-04 1.0788e-01 -1.660 le-hOO 0 0 

2.2977e-f00 -1.0788e-0l -8.7313e-02 -I.oo06e-F01 0 0 

2.6647e-2l 1.906Se-24 -L7810e-23 -9.5412e-19 l.OOOOe-FOO 0 

6.S03oe-|-00 -3.6787e-03 -4.7683e-01 -5.6566e-{-02 -3.3309e+01 -1.05626-00 

1.963:3e-02 -1.0616e-05 -1.3760e-03 -1.143Se-|-01 -3.7880e-F00 -l.S674e-02 

S.7o66e-01 -4.734Se-04 -6.1371e-02 -7.2959e-i-01 2.2694e+02 -l.r23oe-01 

3.1959e-21 2.2S69e-24 -2.1360e-23 0 0 0 

-1.5689e-|-00 8.4S33e-04 l.0996e-01 1.3044e-t-02 7.5203e-f00 l.032Se-03 

-l.3839e-21 -9.9028e-25 9.2498e-24 -3.2629e-h00 0 0 

1.3726e-20 9.8217e-24 -9.1740e-23 -l.o649e+01 0 0 

l.S876e-21 1.3o07e-24 -l.2616e-23 -1.4235e-|-01 0 0 

6.9622e-19 4.9819e-22 -4.6o34e-21 S.1995e+01 0 0 

-9.9383e-20 -7.1lloe-23 6.642.5e-22 -9.1899e-02 0 0 

1.0609e-lS 7.o916e-22 -7.0910e-21 4.90.52e-f-00 0 0 
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Columns 7 through 12 

0 3.35286-24 

0 -1.1098e-24 

0 2.6698e-25 

0 -5.8113e-27 

-l.6419e-04 4.7677e-i-00 

1.0748e-02 1.375Se-02 

1.3861eM-00 6.1363e-01 

0 -2.0000e-01 

-l.3797e-02 -1.0994e-t-00 

0 -o.545oe-27 

0 1.7750e-26 

0 -3.i26Se-2S 

0 -2.1801e-lS 

0 -1.1027e-17 

0 -1.7493e-17 

138 

0 

0 

0 

0 

9.3602e-04 

2.701le-06 

l.2047e-04 

0 

1.0002e+00 

0 

0 

0 

0 

0 

0 

2.5519e+00 

-1.8260e-03 

-1.7056e-02 

-4.0406e-23 

-7.9783e-02 

-2.3023e-04 

-I.0269e-02 

-4.8459e-23 

1.8398e-02 

-9.2097e-04 

-l.lS8Se-01 

-S.736oe-03 

-1.05o7e-20 

1..5069e-21 

-1.60S7e-20 

-l.2239e+0I 

8.7579e-03 

S.lS04e-02 

1.9379e-22 

7.12906-03 

2.0o72e-0o 

9.1755e-04 

2.3242e-22 

-1.6440e-03 

l.lS8Se-01 

-2.2S86e-02 

-3.S316e-02 

5.0632e-20 

-7.2275e-21 

7.71ooe-20 

-1.1133e+01 

7.9666e-03 

7.4412e-02 

1.762Se-22 

2.3623e-01 

6.8169e-04 

3.0405e-02 

2.1142e-22 

-o.447.5e-02 

S.736.5e-03 

-3.S316e-02 

-2.18o9e-01 

4.6057e-20 

-6.5744e-21 

7.01S3e-20 
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Columns 13 through 15 

6.0462e-17 4.3264e-20 

-6.5134e-14 -4.6607e-17 

-7.4086e-15 -5.3013e-lS 

6.0134e-20 4.3030e-23 

6.S355e-t-00 -2.3434e-01 

1.9725e-02 -6.7622e-04 

8.19 (^8e-01 -3.0161e-02 

-3.5527e-15 0 

-1.5763e-|-00 5.403Se-02 

5.7887e-21 4.1422e-24 

-2.3063e-19 -1.6503e-22 

-5.7341e-20 -4.1031e-23 

-2.5542e-t-01 -l.S754e-01 

1.8972e-01 -9.3483e-04 

S.5135e-01 -1.0892e-01 

-4.0411e-I9 

4.3534e-16 

4.9517e-17 

-4.0192e-22 

2.2669e+00 

6.5417e-03 

2.9177e-01 

2.7756e-17 

-5.2276e-01 

-3.S690e-23 

1.5414e-21 

3.83256-22 

1.20SSe-h00 

1.0S65e-01 

-7.7646e-02 
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A's = 

-1.4704e-16 

1.5841e-13 

LS018e-14 

-1.4625e-19 

4.316Se-l9 

-7.8287e-I9 

4.0137e-17 

7.3071e+01 

0 

-1.4078e-20 

5.6088e-19 

L394oe-19 

1.3071e+01 

-1.4650e-02 

7.8198e-01 
[\c = 

Columns 1 through 6 

-3.43o4e-01 1.8.57oe-04 2.4077e-02 2.8o63e+01 I.6467e+00 2.26Ioe-04 

Columns 7 through 12 

-3.021 le-03 -2.4074e-01 -4.7263e-05 4.02S6e-03 -3.5997e-04 -1.192Se-02 

Columns 13 through 15 

-3.451oe-01 l.lS33e-02 -1.1447e-01 

KD = 

0 
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Multiplicative Uncertainty: System Responses and y. Analysis (Middle Altitude) 

Figure E.3 Robust synthesis: Middle-altitude/high-airspeed 
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The state-space representation (/v'4, A's< A'c^ A'd) of the designed robust controller 

K at Middle Altitude/Airspeed: 

A A = 

Columns 1 through 6 

-1.3440e-02 -7.7249e-02 -3.5857e-l-00 0 0 0 

7.7249e-02 -I.0437e-02 2.7123e-h00 0 0 0 

0 0 0 l.OOOOe+00 0 0 

-2.1096e-02 2.0624e-02 -l.70.52e-h02 -1.761Se+01 -9.7767e-0.5 -2.6352e-03 

-2.2723e-04 2.2215e-04 -l.L643e-i-01 -2.44.5oe-|-00 -1.3617e-02 4.1638e-02 

-2.7088e-02 2.64S2e-02 -2.i90Se-F02 1.5279e+02 -9.8664e-02 -1.626Se-fOO 

o.2191e-37 3.9477e-37 -1.421 le-14 0 0 0 

7.2925e-03 -7.1293e-03 5.8946e+01 5.7191e-t-00 L3733e-03 -3.1176e-02 

0 0 9.3630e+00 0 0 0 

0 0 2..5314e+01 0 0 0 

0 0 1.0464e+02 0 0 0 

0 0 -5.4717e-}-01 0 0 0 

0 0 3.4403e-|-01 0 0 0 

0 0 -2.1087e+0l 0 0 0 

5.1003e-lS 3.S.579e-lS -3.7704e+00 0 0 0 

-9.5587e-I9 -7.2303e-l9 5.7906e+00 0 0 0 
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Columns 7 through 12 

-6.9340e-36 0 3.6714e-02 -9.9262e-02 -4.1032e-01 -2.14566-01 

2.12716-36 0 -2.7771e-02 7.5083e-02 3.1037e-01 1.6229e-01 

0 0 0 0 0 0 

2.7762e-|-00 -l.S979e-02 -2.2632e-01 -3.40906-01 -4.59S56-f00 -7.3015e-0l 

2.9903e-02 -2.0443e-04 -2.437Se-03 -3.6726e-03 -4.9532e-02 -7.S646e-03 

3..5647e-t-00 -2.43696-02 -2.9060e-01 -4.37SOe-01 -5.90456+00 -9.37526-01 

-I.OOOOe-01 0 3.7S29e-37 -1.02286-36 -4.2278e-36 -2.21076-36 

-9.5969e-01 -9.93446-01 7.S236e-02 1.17866-01 1.58966+00 2.52406-01 

0 0 -3.493Se-03 1.34416-01 1.583Se-01 2.97736-02 

0 0 -1.3441e-01 -2.97146-02 -1.5452e-01 -2.2627e-01 

0 0 -l.oS3Se-01 -l.o4.52e-01 -S.6086e-01 -3.37096+00 

0 0 2.9773e-02 2.2627e-01 3.3709e+00 -3.21156-01 

0 0 -2.7097e-02 -7.611Se-02 -5.12946-01 4.702Se-01 

0 0 1.6301e-02 4.75906-02 3.2479e-01 -2.72956-01 

2.o39Se-iS 0 3.6969e-lS -9.99496-18 -4.1316e-17 -2.16046-17 

-3.633 le-IS 0 -6.9284e-19 l.S732e-18 7.74336-18 4.0489e-l8 
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Columns 13 through 16 

-1.3490e-01 S.26S7e-02 -.5.1220e-29 -3.S743e-29 

1.0204e-01 -6.254.5e-02 1.57126-29 l.lSSoe-29 

0 0 0 0 

-2.7146e-01 2..5S70e-01 1.43126-t-OO S.78S4e-01 

-2.9240e-03 2.78656-03 1..5416e-02 9.46636-03 

-3.4S56e-01 3.32176-01 l.S377e-h00 1.12846-^00 

-1.3900e-36 8.51986-37 0 0 

9.3838e-02 -8.94276-02 -4.94756-01 -3.0380e-01 

2.7097e-02 -1.6301e-02 0 0 

-7.61186-02 4.75906-02 0 0 

-5.12946-01 3.2479e-01 0 0 

-4.702Se-01 2.729oe-01 0 0 

-8.98656-01 6.6396e-01 0 0 

6.6396e-01 -5.1216e-01 0 0 

-1.35846-17 8.3260e-18 -4.92576-02 -1.0434e-01 

2.54586-18 -1.5604e-lS 9.2777e-02 1.3089e-03 
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KB = 

7.o223e-28 

-2.3075e-28 

0 

0 

0 

0 

6.6222e+00 

0 

0 

0 

0 

0 

0 

0 

-2.17S9e-01 

3.3464e-01 
Ac = 

Columns 1 through 6 

2.2024e-02 -2.1532e-02 1.7S02e+02 

Columns 7 through 12 

-2.S984e+00 1.9S14e-02 2.362Se-01 

Columns 13 through 16 

2.S341e-01 -2.7008e-01 -1.4942e+00 

Ad = 

0 

1.7273e+01 4.1477e-03 -9.41ooe-02 

3.5o96e-01 4.S009e+00 7.622Se-0l 

-9.1752e-01 
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Multiplicative Uncertainty: System Responses and ^ Analysis (Middle Altitude with 

Reduced Controller S"*) 

Figure E.4 Reduced robust controller (5"'): Middle-altitiide/high-airspeed 
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The state-space representation (A'4. A'g, A'c- A'o) of the reduced robust controller K 

(5th order) at Middle Altitude/Airspeed: 

A'.4 = 

-3.9403e-01 1.3741e-|-01 L3963e-i-00 5.5590e-01 1.6410e-01 

-9.6335e-j-00 -1.0473e-f01 -6..56o4e-f00 -2.o424e+00 -S.5174e-01 

-L0o71e-l-00 -7.S6S9e-01 -2..5107e-01 

0 

0 

0 

0 

0 

0 

0 0 

-I.4247e-01 -9.60S9e-02 

0 -l.S32Se-02 
Ag = 

-o.S067e-01 

3..56o9e-l-00 

S.863Ie-01 

3.6I06e-01 

2.1136e-01 
Ac = 

5..5692e-0I -3.5740e+00 -S.S366e-01 -2.7071e-01 -l.So05e-01 

Ad = 

-9.252 le-02 
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