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ABSTRACT

This research consists of two parts: (1) robust steady-state tracking of sampled-data
systems and (2) robust aircraft pitch control.

In Part [, robust steady-state tracking of linear shift-invariant and periodic discrete-
time systems in the presence of structured norm-bounded discrete-time uncertainty is
discussed first. Using the results for discrete-time systems. robust steadv-state track-
ing of sampled-data systems. which are considered as continuous-time systems. in the
presence of structured norm-bounded continuous-time uncertainty is addressed. Exact
conditions are derived for robust steady-state tracking of known inputs for sampled-data
systems by using the lifting technique. Sampled-data systems are approximated by fast
sampling of the input and output. The resulting systems are in discrete time. Based
on the analysis of the resulting approximate discrete-time systems. an approximate con-
verging computation algorithm is given. The same results also apply to general periodic
linear time-varying continuous-time systems.

[n Part II. robust aircraft pitch control is presented. The discussion focuses on the
longitudinal attitude control problem when aircraft weight and center of gravity are
unavailable as control inputs. Due to the variation of weight and center of gravity in
aircraft models, multiplicative uncertainty models for different flight conditions (three
different altitudes/airspeeds) are derived for robust synthesis. Longitudinal attitude
robust controllers are designed to provide consistent performance under varying weight

and varying center of gravity locations.



CHAPTER 1 GENERAL INTRODUCTION

Two topics will be discussed in this dissertation: (1) robust steady-state tracking of
sampled-data systems and (2) robust aircraft pitch control.

[n the first part. robust steady-state tracking of sampled-data systems is consid-
ered. The performance is considered in a robust manner subject to the system’s robust
stability. Robustness of sampled-data systems has received a lot of attention recently.
A sampled-data control system consists of a continuous-time plant to be controlled.
a discrete-time controller, and ideal continuous-to-discrete and discrete-to-continuous
transformers. Instances of sampled-data systems can be found in numerous control ap-
plications. Sampled-data systems are difficult to analyze because in continuous time
they are time varying, or more precisely they are periodic, even when the plant and
controller are both time invariant. Therefore the lifting technique is used to deal with
periodic systems.

Robust performance of steady-state tracking to input signals is studied in our research
of sampled-data systems. Even though zero tracking can be achieved for a nominal sys-
tem. the steady-state tracking error may no longer be zero in the presence of system
uncertainty. Based on the results of robust stability of sampled-data systems, condi-
tions of robust tracking to known inputs in the presence of structured norm-bounded
uncertainty will be developed in the following chapters, using some appropriately defined
performance measures.

Chapter 2 introduces sampled-data systems and the robust steady-state tracking

problem. Relevant research can be found in Chapter 3, the literature review. A collec-
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tion of definitions and notations is given in Chapter 4. Robust steady-state tracking for
discrete-time systems is considered in Chapter 5. Results are derived for multi-input
tracking of linear shift-invariant and periodic discrete-time systems, respectively. Then
in Chapter 6. exact conditions of robust steady-state tracking of sampled-data systems
are obtained. Chapter 7 discusses a convergent computation algorithm by an approxima-
tion method when sampled-data systems are related to the approximated discrete-time
systems; a simulation example is shown. Conclusions can be found in Chapter 8.

In the second part, we will address the robust controller design for the longitudinal
altitude control of aircraft. This research focuses on the longitudinal altitude control
of aircraft with variations in weight and center of gravity throughout the flight regime.
The objective is to develop a robust control algorithm that provides consistent aircraft
performance in the duration of flight.

Chapter 9 introduces the H., design for aircraft. Aircraft dynamics and performance
criteria are given in Chapter 10. The aircraft model is given as a state-space model with
variations in weight and center of gravity. Before the robust controller is designed.
nominal models are investigated in Chapter 11. Two controller design set-ups are given:
model matching and desired model as prefilter. Nominal controllers are designed using
those two set-ups. Based on knowledge of the nominal design, a robust controller is

synthesized using the prefilter approach in Chapter 12.



PART 1

ROBUST STEADY-STATE TRACKING OF
SAMPLED-DATA SYSTEMS



CHAPTER 2 INTRODUCTION

Traditionally, the design of effective controllers for real systems requires accurate
mathematical models of the physical systems. The design is based on the specific models
of interest. However. the exact physical models cannot be obtained. only the approxi-
mated ones. On the other hand, the more accurate the models. the more complicated the
design and analysis procedure is for the controllers. Therefore. simple but less accurate
approximate systems should be studied. Besides the approximation of real systems, we
cannot avoid the existence of uncertainty around the nominal systems. The uncertainty
drives the real systems from the nominal models. Perturbations from outside will affect
system performance as well. In general, a well-designed controller that achieves stability
and performance for the nominal system may fail to achieve the designed objectives for
the real system and may even make the closed-loop system unstable. For these reasons.
robust control is introduced to deal with model uncertainty and perturbation.

Since digital techniques provide many benefits. modern control systems usually em-
ploy them for controllers. The fact that most new industrial controllers are digital pro-
vides strong motivation for studying digital control systems. Essentially, there are three
approaches to the synthesis of digital controllers. (1) An analog controller is designed
for the continuous-time plant and then is implemented as a discrete-time controller ob-
tained by discretization. Analog specifications can be recovered as the sampling period
of the discretization goes to 0. (2) We can also discretize the continuous-time plant and
obtain an approximate discrete-time system. A discrete-time controller is designed for

the resulting discrete-time system, and then this designed discrete-time controller is im-
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plemented to control the original plant. The designed controller depends on the choice
of sampling period. Both of these approaches ignore the system’s behavior between the
sampling instants and may result in designs that do not meet the specifications. (3)
We can design controllers directly for sampled-data systems. This direct approach to
studying sampled-data systems requires considering them as periodic continuous-time
systems. Thus. this approach is harder than the previous two approaches because sys-
tems are time varying, but it will solve the problem with no approximation.

A sampled-data system arises when a discrete-time feedback controller. A, is intro-
duced to control a continuous-time plant, &, through the connection by the sampler. St.
and the hold device, Ht. St and Hr are synchronized (see Figure 2.1). The sampler St
periodically samples and converts continuous-time signals into discrete-time signals. On

the other hand. the hold operator Hr converts discrete-time signals into continuous-time

Hy <1 K, [<{ Sr =

Figure 2.1 A sampled-data system

signals by holding them constant over the sampling period. Sampled-data systems oper-
ate in continuous time, but some continuous-time signals are sampled at certain instants,
producing discrete-time signals. Thus, sampled-data systems are hybrid systems, involv-
ing both continuous-time and discrete-time signals in a continuous-time framework. A
sampled-data system with this configuration, considered as a system in continuous time,
is not time invariant even when the plant and the controller both are linear time in-

variant (LTT). In fact, this system is periodic with the same period T as the sampler



and hold device. A conventional approach to the sampled-data system problem is to use
the isomorphic lifting technique. converting the periodic linear time-varying system to
a linear time-invariant one.

Consequently, robust stability and performance to model uncertainty and perturba-
tion is a consideration in sampled-data system analysis (see Figure 2.2). Some results

have been developed for robust stability and performance. On the basis of the results for

__{ HT <= 7 Kd <= ST -

AL

Figure 2.2 A sampled-data system with uncertainty

robust stability, robust steady-state tracking to known inputs. an important performance
problem. will be discussed in the following chapters, using some appropriately defined
performance measures. By robust steady-state tracking. we mean that the system is
robustly stable and the steady-state tracking error in a certain measure is bounded and
less than the required value in the presence of structured norm-bounded time-varying
uncertainty with finite memory. We can show that even if zero steady-state tracking can
be achieved for the nominal system, the steady-state tracking error may no longer be
zero in the presence of time-varying uncertainty in the system. In fact, it can be quite
large. Like the design approaches we discussed above, the performance analysis of ro-

bust steady-state tracking of sampled-data systems can be conducted in different ways.



We will discuss sampled-data systems directly and derive exact conditions of robust
steady-state tracking for sampled-data systems. As far as computation is considered, we
will discretize the continuous-time plant by fast sampling. Based on the performance
analysis of the resulting approximate discrete-time system, a computation algorithm is

given in a convergent approximation approach.



CHAPTER 3 LITERATURE REVIEW

Feedback control is necessary for control systems when disturbances and uncertainty
are considered. Robustness of control systems in the presence of disturbances and un-

certainty is an important issue in feedback control.

3.1 Robust Stability and Performance

Depending on the performance objectives and the nature of the signals affecting
a given system. the robust stability and performance of the system can be addressed
using approaches that differ according to the definitions of a number of different norms.
These norms include the H; norm, which measures the output power when the input is
a white Gaussian stochastic process; the H,, norm, which is the induced operator norm
mcasuring cnergy gain of the operator when £, signals. or bounded energy signals,
affect the system; or the £,//; norm, which captures the induced operator norm when
the £/l signal (bounded signal) norm is used.

The last problem is the so-called £,/I, problem, which Vidyasagar [32] originally
introduced in continuous-time systems when bounded persistent perturbations were pre-
sented. Dahleh and Pearson [12, 13] developed a complete solution to the £, /{; optimal
control problem of linear time-invariant systems by minimizing the £, //; norm of closed-
loop systems. Dahleh and Ohta [11] found necessary and sufficient conditions for the
robust stability of LTI systems with unstructured uncertainty. Khammash and Pearson

[27, 28] derived the necessary and sufficient conditions for robust stability and per-



formance when nominal systems are LTI with structured uncertainty. The performance
robustness problem can be converted to a stability problem, and necessary and sufficient
conditions can be provided in the terms of the spectral radius of certain nonnegative

matrices.

3.2 Robust Stability and Performance of Sampled-Data Sys-

tems

The robustness problem in sampled-data systems has received significant attention
in the literature. In their book. Chen and Francis [10] discuss the subject and provide an
extensive list of references. Basically, the difficulty in studying a sampled-data system
is that it is time varying even when the plant and the controller are both time invariant.
A general tool for dealing with sampled-data systems is the lifting technique. which was
generalized as a framework in Bamieh and Pearson’s paper [4]. These researchers estab-
lished connection between periodic continuous-time systems and linear shift-invariant
(LSI) infinite dimensional discrete-time systems. The same technique can be found in
[3. 6]. The resulting infinite dimensional problem was then solved by an approximation
procedure.

Robust stability and performance analysis are based on induced norms of the closed-
loop operators. Computation and optimization of sampled-data system norms are pop-
ular research subjects. Bamieh and Pearson [4, 5] together with Dahleh [3]; Chen and
Francis [8]; Dullerud [16] and with Francis [17]; Kabamba, and Hara [23]; Leung, Perry.
and Francis [29]; Sivashankar, and Khargonekar [30] et al. have investigated the H,, the
H. and the L, induced norms for sampled-data systems. A framework for studying
nominal stability of sampled-data systems can be found in Chen and Francis [9] as well
as Francis and Georgiou [19]. The robust stability problem of sampled-data systems

in the presence of structured norm-bounded uncertainty was addressed by several re-
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searchers. In their paper. Dullerud and Glover [18] studied the £,-stable problem with
stable structured LTI perturbation. Khammash [24] provided necessary and sufficient
conditions for robust stability of linear time-invariant as well as linear time-varying
systems when L. ([.) norm is taken to be the signal norm. Those conditions were
given as the spectral radius of certain nonnegative matrices. which consist of induced
norms of systems. In the same paper, it was shown that the same result can be applied
to sampled-data systems. A similar result for sampled-data systems was developed in
Sivashankar and Khargonekar [31] using a different approach. The £,-stable problem for
sampled-data systems was also studied there. With robust stability conditions available
for sampled-data systems. robust performance problems such as robust tracking can be

addressed.

3.3 Robust Steady-State Tracking of Sampled-Data Systems

Steady-state tracking and regulation have been addressed in the literature. Dullerud
[16] investigated tracking step signals for sampled-data systems. Design of sampled-data
regulators was discussed. A procedure to compute the £, induced norm of the closed-
loop sampled-data systems was also presented. Hara and Sung [21] discussed ripple-free
conditions in sampled-data control systems. Chen and Francis [L0] also discussed step
tracking of sampled-data systems. When the sampled-data system is internally stable.
as a special case, tracking to a step input reference for the corresponding discretized
system has no steady-state inter-sample ripple. The steady-state tracking errors for
sampled-data system and the discretized system are equal. However, this is not the case
for general reference signals. Ripple-free tracking cannot be guaranteed when system
uncertainty is considered.

Khammash [25] introduced robust steady-state tracking of known inputs for discrete-

time systems in the presence of structured norm bounded uncertainty. An appropriate
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measure for discrete-time signals was also defined. By using this performance measure.
necessary and sufficient conditions for robust steady-state tracking of LSI discrete-time
systems were developed. Those conditions are easily computable and fit well with the

existing conditions on stability robustness. A multi-reference tracking case was discussed

in [33].



CHAPTER 4 DEFINITIONS AND NOTATIONS

Z* denotes the set of nonnegative integers.

Z{k) and # denote discrete-time signals. while M and A denote discrete-time op-

erators.

r(t) and r denote continuous-time signals. while M and \ denote continuous-time

operators.

[ denotes the space of sequences {Z(k)}7Z, with the norm defined as

[l = sup [£(k)| < <.

L denotes the space of real valued measurable functions on [0. oc) with the norm
defined as

lz|lc := ess sup |z(¢)] < oc.

IZ . 0.1) denotes the space of L[0, T)]-valued sequences r = {zi},zx € L[0,T].

The norm is defined as
2lliz oy == sup 2kl ctomy < 2.

RC denotes the space of real valued right continuous functions on [0, oc).
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® ¢, denotes the subspace of [, of sequences converging to zero.

e P denotes the truncation operator:
For the discrete-time signal. Pg: [ — (..

#(k) k<K

0 otherwise.

For the continuous-time signal, Pr: L., — L.

r(ty t<T.
(Prz)(t):=

0 otherwise.

e The shift operator Sx(or ST) acts on [(or L) signals by shifting them to the

right by V(or T') if V(or T') > 0 and to the left if V(or T') < 0.

e A linear shift-varving (LSV) discrete-time operator M is said to be periodic with

period .V if U = S_yMSy. Similarly. a linear time-varying continuous-time

J

operator M is periodic with period T" it I = S_7t M St.

e The kernel representation M (-.-) (or M(-.-)) of an operator M (or M) is defined

as follows:

For the discrete-time case, M: [ — .
(Mz)(k) =Y M(k,)z(l).
{=0

For the continuous-time case, M: L., = L,

(Mz)(t) = /0°o M(t,7)z(7)dr.



14

For a LTI /. —stable operator Ml — /. its impulse response is an element of

1. the space of sequences {M(k)}2,. The induced operator norm is given as

M|l =3 |M(k)| < .

k=0

For a LTI £, —stable operator M: £, — L., its impulse response is an element

of £;. The induced operator norm is given as

M| = sup/ [M(¢t. T)ldT < 0.
t Jo



CHAPTER 5 ROBUST STEADY-STATE TRACKING OF
DISCRETE-TIME SYSTEMS

To prepare for the derivation of the solution to the problem of robust steady-state
tracking of sampled-data systems, we will first discuss a similar problem for discrete-
time systems. As a review. the results for linear shift-invariant discrete-time systems are
shown in Section 5.1. For a general multi-input multi-tracking case. the necessary and
sufficient conditions will be developed in Section 5.2. Finally, when the discrete-time
system is periodic. the problem is solved by using the lifting technique.

First, let us examine the following example shown in Figure 5.1. 7 is the known

reference input. and € is the tracking error. G is a linear shift-invariant discrete-time

<!

{
!

X
.

{1
4

Figure 5.1 A robust tracking problem

plant, while K is a linear shift-invariant stabilizing discrete-time controller. A is a causal
norm-bounded uncertainty that belongs to a certain class of perturbation that will be
given later. The objective is to make the tracking error, €, as small as possible in the

steady-state value. As one possible way, we can pose the robust tracking problem as
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the worst-case steady-state value of the tracking error when system uncertainty varies
within the uncertainty class to which it belongs.

For the tracking problem, it is natural to use the infinity norm to measure the
signals of interest. Infinity norm is defined for the space, denoted as (... of the bounded
sequences. Since steady-state tracking is the problem of interest, a steady-state measure
in time domain, namely. steady-state semi-norm, will be defined as the performance
measure.

The steady-state value of an error signal is defined as limi,. |Z(k)| if it exists.
In general. the limit. limg o |Z(k)|. may not exist. However, the limit superior of a
signal, limp o supisk|E(k)|, alway exists if T € [,. Let Lg denote the ~tail” operator:

l« — [ as follows:

(k) k> K.
Ly :Lgz=
0 otherwise.

Then. the limit superior can be defined as follows:
lim sup (k)| = lim [|Lx# ..
K=o s 1 K=o
In the following, a steady-state semi-norm is generalized as a performance measure for

tracking problems.

Definition 1 [25] (Steady-State Semi-Norm: Discrete-time) For a discrete-time

signal T € [ the steady-state semi-norm, ||Z||ss, is given by
12llss := lim sup |2(k)] = lim |ILx F]le
which is well defined as long as T € .

Note that ||I]|ss = limroseo |Z(K)] if limgoeo |T(k)| exists. One can also see that for

any & € ly. [Z||ss < ||#]leo- This semi-norm || - ||ss can be extended to %, and computed
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by ||Z]|ss = max; ||Z;]|ss, where I; is the ith component of . Now the robust tracking
problem can be evaluated by the quantity, supj ||Z||ss, as the performance measure.

A conventional way to repose the robust tracking problem in a general form is given
in Figure 5.2. M is the linear shift-invariant stable system representing the nominal

part in the system that includes the nominal plant G and stabilizing controller K. A

M

P
—————
3

A

Figure 5.2 The discrete-time system with uncertainty

represents the uncertainty in that system. For a more general class of perturbations

defined in the following

-~

Ai={N:ile—lx: X s linear. causal. and 1A < 1}.
the stability and performance conditions are known (see [11, 27. 28]).

In this research. the system uncertainty is restricted to the class of linear causal norm-
bounded structured uncertainty with finite memory. A bounded linear operator. A. is
said to be a finite memory operator if A maps finite sequences into finite sequences. Let

Apg denote the class of linear causal norm-bounded finite memory perturbations. The

class of norm-bounded structured uncertainty with finite memory is defined as follows:
D(n) = {diag(A,,---,A,): A; € A},
where A; : Ly = [ belongs to the class Afr and

A = sup 12elhe <y

r#0 “‘i.”loo -
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where ||A;| is the induced norm. Since Ar C A, the existing robust stability conditions
are still sufficient when the perturbations are restricted to the class of Ag. It has been
shown in [25] that these same conditions also remain necessary in this situation. meaning
that the existing necessary and sufficient conditions for robust stability remain the same
when D(n) is considered as the class of uncertainty for the systems. All results obtained
will equally applied to the case when A is fading-memory operator mapping co into co.

Let M (see Figure 5.3) be an bounded operator: % — [%. Define M as the following:

[Mulle -+ Ml

”‘wnl”l ”-’Wun”l

The robust stability problem in Figure 5.3 is solved by the following theorem:

A

Figure 5.3 The robust stability problem

Theorem 1 [25] Robust Stability (Finite Memory Perturbation) The system in

Figure 5.3 is robustly stable iﬁ'p(M) < 1. where p(-) is the spectral radius.

5.1 Single-Input Tracking (LSI Discrete-Time Systems)

Robust tracking for linear shift-invariant (LSI) discrete-time systems was first intro-

duced by Khammash [25]. Necessary and sufficient conditions were derived for robust
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steady-state tracking of known inputs in the presence of structured norm bounded un-
certainty. The robust steady-state tracking problem is defined in [25] when M is a stable

linear shift-invariant discrete-time system.

Definition 2 (Single-Input Tracking: LSI Discrete-Time Systems) The linear
shift-invariant discrete-time system M in Figure 3.2 is said to achieve robust steady-state

tracking if
[. The interconnection of Ml and A is [, -stable for all A\ € D(n).

2. sup ||€]lss < 1.
AeD)

Suppose M (see Figure 5.2) is a linear shift-invariant discrete-time system. F is
the single input signal. and € is the corresponding tracking error. Partition M as a

(n 4+ 1) x (n + 1) operator matrix:

/ Ui M, ;‘;[1.n+l
N - Vi, M Vontt
\ 1Wn+1.1 -‘:[n+1.2 .o i‘:[n-{—l.n-{—l )

Let .‘:[,‘j be the ijth element of M. Since M;j is a linear shift-invariant causal operator,

it can be represented by the following infinite matrix with lower triangle structure:

( M;(0) 0 0 )
- Mi;(1) M;(0) 0
Mi;(2) Mi(1) M(0)

\
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M;; is a bounded operator: [,, — o, since M is. Therefore. the induced norm || M|,
is well defined and
M # || 2 -
IMiiFlloo _ 57 k)1 < .

| M|, := sup L=
T Bl &

where M;;(-) is the kernel representation of .’W;i shown in (5.1). A fundamental (n+1) x

(n + 1) nonnegative matrix is defined as the steady-state norm matrix in the following:

(Wl W8Tl Wl )
M L HJV['zU'Hss ” tv[n“x .- ”-“W'z.nH“l
\ ”i‘;[n+1.1"||55 ”i‘:[n+l.2"1 cen I‘é‘;[n+l.n+lul

According to [25], necessary and sufficient conditions of robust tracking for the system

in Figure 5.2 were given by the following theorem:

Theorem 2 The LSI discrete-time system M in Figure 3.2 achieves robust steady-state

tracking iﬂp(Mss) < 1.

5.2 Multi-Input Tracking (LSI Discrete-Time Systems)

Robust steady-state tracking of discrete-time multi-input multi-tracking systems will

be discussed in this section.

5.2.1 Problem Set-Up

Consider the MIMO linear shift-invariant discrete-time system in Figure 5.4. 7 €
R? is the known reference input with dimension p; é € R? is the tracking error with
p p g

dimension q. A represents the system uncertainty and belongs to D(n). The worst-case
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Figure 5.4 The MIMO discrete-time system

steady-state value of error & for A € D(n) when 7 is known is determined by the quantity

B sl

where ¢€; is the :th error signal.

M can be partitioned as (¢ + n) x (p+ n) operator matrix in the following:

.“7[[.1 .. .‘Tll'p -":[l,p+l .. l‘:[l.p-{-n
M _ :‘:qul . e :\;[q.p j\:[q.p+l [ :"‘[q.p+n = h:/[u 1\:/,[]'_) (5 2)
4"[q+l.l cen A\’[q-{-l.p -"w'q+l,p+l .o l"[q+l,p+n Mg[ Mzg
~‘:[q+n.l .. -‘:[q-i'n.p -"‘:[q+n.p+l [N 1‘:[q+n.p+n )

Therefore, the following equation holds

1

Mll Ml2
Mz Mz

Nad] o
I
Iy
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5.2.2 Robust Steady-State Tracking

The definition of robust steady-state tracking for a multi-input tracking system in

Figure 5.4 is defined as follows:

Definition 3 (Multi-Input Tracking: LSI Discrete-Time Systems) The linear

time-invariant system M in Figure 5.4 is said to achieve robust steady-state tracking if
1. The interconnection of M and A is l-stable for all A € D(n).

2. lléllss == max S léllss < L.

For different output tracking errors (there are q of them) of the system M in Figure
5.4. we can construct q different nonnegative matrices M;s € RiFIXEHN | < < g,

which are referred to as the steady-state norm matrices as follows:

(s Maiiilles | 19Tmalle oer [¥Topenl
M = | S0 Moriiftllss | IMauipallt -+ (Mgt prnlle (5.3)
20, Momafillss | IMapnarllt - o I Mptapinll

Define the lower part of M as

”l‘;[q-!-l,p!-lul lli‘:[ﬁl,wnlll
Ma

il
—_——
ot
NS
-

I Motnpralls -+ | Matmpinlls

Before robust steady-state tracking is discussed, the stability robustness of the system

in the presence of finite memory perturbation must be addressed. According to Theorem
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1, the robust stability is determined by the lower part of the steady-state norm matrix.
i.e., the necessary and sufficient condition is p(Ma) < L.

We will present sufficient conditions for robust steady-state tracking in terms of the
above steady-state norm matrix (5.3). First we introduce the following Lemmas, which

will be used in the theorem’s proof.

Lemma 1 [25] Let M : | — lo be any bounded linear fading memory operator. Let

I €lx. Then
IMElss < (Mo
where || M| is the induced .. operator norm.

Proof: This can be easily seen if one notices that

NLmMi|w = [LmMLoi+ Ly MPLE||s
< NLmMLoyEljoe + | Lo M PaZ|

< NWMINLailloe + | Lo M Pzl o

0

The second term vanishes when first m and then n goes to infinity.

A square nonnegative matrix has the following property:

Lemma 2 [22] Let A be a square nonnegative matriz (i.e.. a;; > 0). Then p(A) < 1 if
and only if £ > 0 and r < Azr imply x = 0. where the inequalities are taken component-

wise.

Theorem 3 If p(Mi,) < 1, 1 <i< g, then M is robustly stable and ||é||,s < | for all

Ae @(n).

Proof: Define the nonnegative matrix M, as above (5.4) for the lower part in (5.3).

which is associated with the uncertainty.
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By Lemma 2, it is easy to see that p(Mi,) < 1 implies p(I\-/I,_\) < 1. which is exactly
necessary and sufficient for robust stability by Theorem 1. guaranteeing that the system
is robustly stable.

For the second part of this theorem, we use contraposition. Suppose [|é:||ss > 1 for
some i : 1 <i < qand A € D(n). If we define € and § as in Figure 3.4, then € and g

are given by

é =M, 7 + M€. (5.5)
§ = Mz 7 + Mapé. (5.6)
By Lemma | and using the fact that || - ||5s satisfies the triangle inequality. we have
-~ p ~ ~ g - ~
1< llei”ss < “ Z -“’[i,l".'l”ss + ”-"Wi-p-i-l”l”&”ss +-- 4+ ”J’[t-p+n”l”§n”ss- (5.7)

=1

Using the fact that |A|| < 1, we have
1€:llss < Ug5lss

and the following inequalities for | < j < n

- p - - -
”{i”ss < ”.‘/j“ss < ” Z “IQ‘f'J-frIHSS + ”-‘Uq+J-p+l”l”€l”33 Tt
=1

+ ll-’"’[q+jvp+n“l“én“ss- (3.

(W]
(0]

Equations (3.7) and (5.8) imply that
r=(l. “élusw T “én“ssy

satisfies z < Mi,r and = > 0. By Lemma 2, this implies p(M:,) > 1, a contradiction to
the hypothesis. This completes the proof. a

To obtain the necessary condition of robust steady-state tracking, we will need the
following lemmas. The first lemma shows the effect of adding a ¢ signal on the values

of the steady-state semi-norm. The second lemma presents necessary and sufficient
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conditions of constructing an admissible uncertainty. Consider the auxiliary system in

Figure 5.5.

Lemma 3 [25] Suppose the interconnection in Figure 5.5 is stable YA € D(n). Then

for any A € D(n), lléllss remains unchanged Vd € cy.

rRY e R

A

Figure 5.5 The auxiliary system

Lemma 4 [25] Given any two sequences of real numbers ij and €. there erists A € Ap.

satisfying Aij = € if and only if
L |Pelle < | Petilloc. V.
2. For any m € Z%, there erists m € Z% such that

1PeLiéloc < [l PiLllocs VK.

The following theorem states that the same condition in Theorem 3 remains necessary

for robust tracking.

Theorem 4 Suppose M is robustly stable and that lléllss < | for all A € Dg(n). Then
p(Mi,) <1 for1<i<q.



Proof: We use contraposition.

Suppose P(Mis) > 1 for some :. By Lemma 2, this implies that + < Mjaz has a
nonzero solution. r > 0. Suppose r = (r1,22,---.Zn41). If £y = 0. then the inequality
y < M.y has a nonzero solution, y = (x2,L3,-+-.rn41). Therefore. we have p(M;\) > 1.
which implies that the system is not robustly stable, a contradiction.

Therefore. we can assume r, # 0. In the following we will show that there exists
some admissible uncertainty A € D(n) such that [|&||,s > 1. i.e.. robust tracking is not
achieved. This will complete the proof.

Without loss of generality, assume r; = 1. Then

I .. I2

< M;

— 8s

\ Zn+t ) \ Tn+l )

é. j. and d are defined as in Figure 5.5. where d € c*. According to Lemma 3.

the steady-state error will not be changed Vd € e?. We will construct admissible €.
AeDn)andd e ch. which will result in ||€l|ss > I, such that Equations (3.5) and (5.6)

are satisfied. and

€ = A(j + d). (5.10)

Given a sequence of positive numbers. {€;.€2,---} € ¢,. We can choose an integer
Ng > 0 and construct fj(k) for 0 <k < ANyand 1 <j < n such that léj(k)l = r,4; and

p - -~ -~ - -~
8(No)l = (X Muaft + Mippi&y + - - - 4 M pina)(No)]
=1

p -~ -~
2 ” Z ‘/‘/[!.17:1”53 + Ill‘/[l,p+1||lx2 + v e +
=1
+”‘/V[i-p+n”l~l'n+1 — €.
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From inequality (5.9), it follows that |é;(:Vg)| > r, —¢,. Then we can choose .V; > V.

and construct éj(k) for Vo +1 <k < .V such that lfj(k)l = Ij41 and

P ~ - ~ ~ ~
1N = Q- Mypraft + Magpipi1bs + -+ + Mg pina ) (V)]

=1

p ~ -~
2 ” Z iw‘q-f-l.lh“ss + ”-/wq+l.p+l”1-l'2 4o 4

- =1
+”-/‘;[q+l.P+n“lIn+l — €.
It follows that |g;(Vy)| > Iy — € from inequality (5.9). We can repeat this process and
come up with .V < V; < NV, < --- and léj(k)l = 41, Vk,J such that
[€(No)| 2 11 —e [&i(Nap )| 2 z1—¢€2

[71(N1)| 2 22—y [91(NVng2)| > z2—¢€2

lgn(ivn)l 2 Iny —€] lgn(ivzﬂ-l)lz Lt —€2

Now we construct d € ¢ by specifving its jth component:

¢

1€l 5gn(§;(0)) k=0
(k) e crsgn(y;(k)) L<k< N,

easgn(y;(k)) No+ 1< k< Nopyyg

[t follows that

1 Pebillso < 1Pl + dj)lloo V.
and Ym € Z%_.3m € Z% such that
I PeLinéilloo < N1PeLm(; + dj)lloo VE-

By Lemma 4, there exists A € D(n) such that € = A(§ + d), while l€llss > 1 = L.

completing the proof. O

Corollary 1 The system in Figure 5.4 achieves robust steady-state tracking if and only

if p(M;) < 1. Yi.
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Proof. If we combine Theorems 3 and 4. we get necessary and sufficient conditions for

robust steady-state tracking of the system in Figure 5.4. a

5.3 Linear Periodic Discrete-Time Systems

To prepare for the discussion of sampled-data systems. we first need to consider
robust steady-state tracking for periodic linear discrete-time systems because sampled-
data systems are periodic. Suppose the discrete-time system M in Figure 5.6 is a linear

periodic discrete-time system with period .V. \ belongs to the same class of uncertainty

as given before.

r R" e RY

VALN
<

—

A -

Figure 5.6 The periodic discrete-time syvstem

M can be partitioned as following, where each element 1\7151- is again periodic with

the same period .V.

/ -V[l.l oo 4‘:[1,p ~'VIl.p+l N -’l‘:[l.p-f-n
. My, ... M,, | M, cor Mypan
M = - 9.1 - 9.p - 9.p+!1 - 9.p+ (5.11)
-"/[q+1,l .. 4‘/[q+l,p “/[q+l,P+l e 4‘/[q+l.p+n
*":[q+n,l .. .’\:Iq-{'-n.p i‘.llq+n.p+l ce f".[q-i-n,p-i-n /
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The analogue definition of robust steady-state tracking when M is a periodic system

is given in the following.

Definition 4 (Robust Tracking: Linear Periodic Discrete-Time Systems) The
linear periodic discrete-time system M in Figure 5.6 is said to achieve robust steady-state

tracking if
I. The interconnection of1\7I and A is l,o-stable for all A\ € D(n).

St ll&llss < 1.

In general. a function M(-,-) defined on Z% x Z* defines a linear stable operator

M : (" - " as follows:

B(l) = i Ml h)w

where @ € [T and 0 € {2.. Each M(L.R) is a matrix € R**™_ [f this operator is causal.
then M(l.h) = O for all A > [. In this case. the operator can be represented as the

following infinite block lower triangle matrix of the form:

( 5(0) \ M(0,0) O 0 Y @(0)

o1) | _ iv.1(1.,0) ;v~1(1.1) ~ 0 w(1) (5.12)
5(2) M(2,0) M(2.1) M(2,2) --- w(2)

I A : : --.)\ : )

Equation (5.12) gives a general representation of linear casual operators. If M is
periodic with period of N, then M(l+kN,h +kN) = M(l, h) for any positive integer k.
The matrix representation for a linear periodic operator is shown in Figure 3.7. It has
a lower triangular Toeplitz structure. To deal with periodic systems. we use the lifting

technique described next.



(

M (0,0) 0 0 0 0 0
M(1,0) M(1,1) 0 0 0 0
M(N-1,0) M(N-1,1) M(N-1,N=1) 0 0 0
M(N,0) M(N,1) M(N,N = 1) M (0,0) 0 0
M(N+1,0)  M(N+1,1) M(N+1,N=1) | M(1,0) M(1,1) - 0
M(2N—1,0) M@2N-1,1) MEN—=1,N=1)| M(N=1,0) A(N—=1,1) -« M(N-1,N—=1)

Figure 5.7 Linear periodic discrete-time system M

o€
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5.3.1 Lifting Technique

Let o = {(0),5(1), 5(2),---} be a discrete-time signal in [™. The lifting operator

Wi (lm — [mV) is defined as follows:

3(0) 5(NV) (kN)
3(1) 51+ N) F(1+kN)

sy |l suany | sk

F(N~1) SN —1+N) | MV L+kN)

\ L B L .

The inverse operator exists and is defined as & = H";‘Q. Notice that the dimension of
the lifted signal. & € {™V.is .V times that of the original signal. &. Define a subsequence

of o o' = {&}}. where [ is an integer € [0. N —1]. &} is given by
oh = B(+kN). (5.14)

&' = {8().8(I + N).---} € I™ has the same dimension as that of the original signal, &.
Clearly. ||&||ss = mar||t!||ss,. Notice that the lifting operator Wy (and Wg') is norm

preserving, meaning that the following equation holds:

IWadlloe = [19]ln-

Suppose the system M in Figure 5.6 is a linear periodic discrete-time system with
period N. M is the (g+ n) x (p + n) operator matrix presented by (3.11). Therefore,
each element M,-J- in (5.11) is a single-input, single-output linear periodic discrete-time
operator with period N defined on [, and M;;(l.h) € R'*!. As shown in Figure 5.8,

lifting both the input and output side of .’~ij, one can get a lifted system, WNM,-,- w3t



i
‘: ~ I '"*._,_—:
: WN _ MU - W :
v, W,
W7, W
Wa (ZJJ' € l‘ll
( M;;(0,0) 0 0 0 0 0
M;(1,0) Mi(1,1) 0 0 0 0
Mi;(N—=1,0) M;(N=1,1) Mi(N—1,N-1) 0 0 0
Wai: € N M;;(N,0) Mii(N,1) Mi(N,N =1) | M;(0,0) 0 0
NU; 0o . . . . .
M(N+1,0) M (N+1,1) Mi(N+ULN=1) | M;(1,0) Mi;(1, 1) 0
Mi@N—1,00 M QN —1,1) MEN =1, N=1) | M, (N=1,00 M (N-1,1) Mii(N=1,N 1)

Figure 5.8 The lifted operator Wy M, Wx!
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and the system matrix representation. Notice that DVV./V[,-J-W",\',l(u-) € RY*Y and the
resulting lifted system becomes time invariant.

Like the definition of lifted signals in (5.14). if picking the /;th row of the output of
Wy M;;Wy', one can define the corresponding lifted operator, (Wx M; WEYE. and the
matrix representation in Figure 5.9. Notice that (WxM;;Wx')" maps (¥ into [ and is
a linear shift-invariant casual operator. The induced norm can be easily computed.

However, we are really only interested in the one-side lifted operator. which is lifted
only on the output side. For each ;V[;j in (5.11): w — 0, if we lift the output side and
pick the [;th output. we can define the corresponding lifted operator. .f[,-lj‘- s — ol as

follows:
M (Mpw)(k) = &4k) = (M;@)Li+kN). (5.15)

where [; is an integer € [0. NV —1]. The matrix representation is given in Figure 5.10.

The kernel representation for .’V.[,-I; is given by
MUk h) == M(li+kN.h). (5.16)

where ng(-. -} is the kernel representation of .\TI;J'.

Note that .V[,-‘;- is related to (Wy ;":[,‘j W3k by the inverse lifting operator. WW'g'. Since
M: is the I;th output of Wy M;;. we have MW ! = (WyM;Wgh)h.

Therefore. as discussed above. \ij W§! is a multi-input (dimension V) single-output

linear shift-invariant system. The induced norm is given by

oo N-1 oo N-1
IMEWRY =30 S0 M (L+kNR) = S0 ST | Mk, b))
k=0 h=0 k=0 h=0

In order to specify M;; completely. it is sufficient to have the knowledge of Mij(k. h).

0<AhSN-1,k=0.1,---.
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( M;;(1;,0)

g R
I ~—] w,
v :

M (1,1,

ij
~ Al

~ f-——————

“’j H

Wni; € [ﬁ

Mi;(l; + N,0)

~

Mii(li + N 1)

ML+ NN = V) | MG, 0) - Ml 1)

Figure 5.9 The lifted operator M*Wg"' or (Wy M Wg'h

ij

2



~1,

i€l

M;;(L;,0)
M;(l; + N,0)

Mu
Vi Wj
(bj € loU
Ml l)y - 0 0

Mi(li + N, 1) Mij(li+ NN = 1) Mi(l;,0)

FFigure 5,10 'The lifted operator /\NI‘-'J‘-

0
Mi(li, 1)
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Finally, the induced norm for the defined lifted operator. \[ can be computed as

follows by using the fact that the lifting operator. Wy (and W'). preserves norms.

| M 2|
=0 |2l
N | MW Wk
T ek Wl
= || MW

o N-1

= S5 Mk k)| (5.17)

k=0 h=0

ol —
151 =

Let [ = [lo.ly.--- .1,] € [0. N—1]™. &" and gj?,j € {1.2.---.n} are defined as above

by {3.14). Define the corresponding lifted system 1\:’1([“')(12‘1 — ™) maps [F.&.---. Al
to [€9. g1, ---. §*]T as follows:
)
AT . R
! ~l I I l Ty
g Mq'+1.1 T qu+1p My, e+lp+t 7 Mqil.p+n = 1Q
= (3.16)
<l “rln I “rln “rln &
\ Yn / \ ‘w'l+n.l s w¢+np "w'z-*-"-P*-l e M 7+n.pn
\ & )

The induced norm for the element in (5.18) can be computed using (5.17). Finally.

we can define the steady-state norm matriz (periodic discrete-time) as follows:

(S il | WSTEL T )
(i) HZL—I A’ +1krk”sa ”Ml+1p+1“ ”M+1p+n”

(5.19)

\” ZL— : q+nLr/~“ss “‘wl-f»np+l“ “V +np+n“
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5.3.2 Robust Steady-State Tracking

Similar to the LSI case. the robust tracking condition for periodic systems is given

in the form of the above-defined matrix, which is stated in the following theorem:

Theorem 5 The linear periodic discrete-time system M in Figure 5.6 achieves robust

steady-state tracking iff

o
(]
o
N

r(l0) ;
max sup p(M.") < 1. (5.
LS1S9 jefo, Nt ]rH

Proof: Sufficiency: Define the lower part in (5.19) as M’_;‘

-l -~ I
132 pll e 1L

1 rl
Vil o 3l

where Iy = [I},l5.--- . [,] € [0. N — 1],

The necessary and sufficient condition of robust stability for system M in Figure 5.6
Is max; p(M(S“) < 1 (see [24]). According to the hypothesis. it is easy to scc that
p(M_f,‘;f‘)) < | implies p(Mi{‘) < 1 if one applies Lemma 2. Therefore. robust stability is
obtained.

Robust tracking will be proven by contradiction, i.e.. contraposition will be intro-

duced in the following if one claims robust tracking cannot be achieved even when

Bty <
No robust tracking for the system in Figure 5.6 means there exists some i.1 < i < g
and A € D(n) such that [[€illss = 1. Clearly, this implies that there exists [y € [0, .V — 1]
such that

€@ ]lss > 1.
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Define € and § as in Figure 5.6. then é° and gj’ are given by (5.18). By Lemma 1

and the triangle inequality, we have the following inequality,

p - -~ - ~ -
DL RMss Y0 Mi&ellos + 1M i llEllss + - - + 1M alllléallss: (5:20)

k=1

Using the fact that [|A]| < 1, we have

”éj”ss < ”gj”s.s-

As we mentioned before. there always exists a {; € [0..V — 1] such that

.1 -
197 llss = 11G;llss-

Therefore. we have ”éj”ss < ”gj-’”s, and the following inequalities for 1 < j < n:

p

~ -l . ~rl . ~ol =
€illss S MG Mss < D2 M iarllss + 1M i Ml Enllss + - - +
k=1

(1)
(8
(]
—~—

rl; c 9e
+ “-"/[q+j.p+n““§n“83' (5.
Inequalities (5.21) and (5.22) imply that
r=(l. ”él“sr T “én”ssy

is a solution to r < Mgf;i)r. By Lemma 2. this implies p(l\./Igl;fi)) > 1 for certain i and [.

Necessity: Again we use contradiction to prove this.

Suppose p(Mgl;'i)) > 1 for some integer i and { = [lo,/1,---.l,]. By Lemma 2. this
implies that r < Mg’;fi)z has a nonzero solution. r > 0. Suppose z = (. 3. --.Tpy1).
First. if z; = 0. then it is clear that the inequality y < Ml_g“y where iA = [l1. 0y, - La).
has a nonzero solution, y,y = (z2, 3, -, rn41)’. Again by Lemma 2, we have p(M%‘) >
1, which implies that the system is not robustly stable, a contradiction.

On the other hand. if r; # 0, we will show in the following that there exists some
perturbation. A € D(n) such that ||®|,, > 1, also a contradiction, completing this

proof.
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Without loss of generality, assume r; = L. Therefore.

0y ()
Tolemin| L (5.23)
\In-{-l \l‘n+1/

Let &°, ¢, giﬁ, and d’s be the corresponding lifted signals (shown in Figure 5.11)
defined in the same way as in (3.14). where d's € ch.
According to Lemma 3. the steady-state error will not be changed vd's € cr. We

will construct €. Ala g D(n) .and d's € ¢y such that

€= Ay 4 d), (5.24)
and
P 3
. M(fivi)
[
3

ZI

Figure 5.11 The auxiliary lifted system

an admissible A € D(n) can be obtained from ;\54, resulting in “éf-"”,s > 1.
Given a sequence of positive numbers {€,,€2,---} € ¢,, we can choose an integer

No > 0 and construct &;(k) for 0 <k < Np and 1 < j < n such that |€;(k)| = r;4, and

p -~ - - -~ -~
[E2(No)l = (O MBA+ ME &+ 4+ ME L E)(No)]
k=1
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p -~
2 3 Mibiellss + 1Maller - +
+“ "/[lp-i-n” LTnt1 — €1
From inequality (5.23), it follows that |&°(NVg)] > z; — ;. Then we can choose
N1 > Mg and construct f,-(k) for Ng+1 <k < Nyand 1 < j < nsuch that Iéj(k)l = It

and
Ig{l(lvl)l = Z "[ q+1. er + "[ g+l p+!§l "[;ff.lp.;.n l)l

Z ”Z ‘/ +lf\rL”53+”‘/ +1p+l”-l') "'+
+” ”;i;—l p+n”‘rn+l — €.

From inequality (5.23). it follows that |§''(V,)| > z, — €;. Repeating this process. we

come up with Vg < NV, < V; < --- and Ifj(k)l = Ij+1. Yk such that

€2 (No)| > 21—€ |60 (Nt )| > 11—€2
]gll(-’Vl)IZ LTa2—€; lJl Vn+2 |> Ia—E€2
G (N 2 2o —€1 |55 (Vo )| > Trn—€2

Now we can construct d's € ¢ by specifying its jth component.

r I€illsgn(§;(0)) k=0

-l .
. ersgn(y’ (k 1<k<N,
Bk = lg(J:()) <k<
e2sgn(y;' (k)) No+1 < k< Nopyy

[t follows that
”Pkfjum < ”PL yJ +dll “oo VI\.,

and Vm € Z*.3m € Z7* such that

IPiLs€illoe < N PeLom (37 + d7)| Yk
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By Lemma 4. there exists A/ € D(n) such that £ = Ala(gla 4 da). while € lss > 21 =
L. It is not difficult to construct an admissible A € D(n) such that [|A| = ”A’.‘-\” and
£ = A(§ + d). where j and d are constructed from gid and dis. respectively, completing

the proof. a



CHAPTER 6 ROBUST STEADY-STATE TRACKING OF
SAMPLED-DATA SYSTEMS

6.1 Sampled-Data Systems

A sampled-data system arises when a discrete-time feedback controller is introduced
to control a continuous-time plant with connection by the sampler and the hold. Such
feedback control can be found naturally in numerous control applications. The resulting
closed-loop system dynamics, known as the hybrid system. consists of both continuous-
time and discrete-time dynamics. Though a hybrid system. from the input-output point
of view. a sampled-data system is considered as a continuous-time system.

Consider the following sampled-data system shown in Figure 6.1. where G. the nom-

M
HT <= Kd <= ST
u Vv
r e
— G ——
g A y

Figure 6.1 The sampled-data system
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inal plant. is a linear time-invariant continuous-time system having the following state-

space representation:

(A B, B, B3\

C, 0 D2 Dis
C2| Day Dy Do
\ C:; Dsl D32 DBS )

Without loss of generality, we may assume that D;; = 0 to ensure well-posedness of the
feedback system. Ay is a stabilizing linear shift-invariant discrete-time controller. which
stabilizes the nominal plant. The plant and controller are interfaced using sampler and
hold. St represents the sampling operator with time period T. while Hr a zero-order
hold with the same period. r is a known reference input. a continuous-time signal. e
is the tracking error. also in continuous-time. y and € are the input and output of the
system uncertainty respectively. u, the output of the hold Hr. is the control input. v
is the measured output. Strictly speaking, St is not an operator on L. but on the
subspace of L. NRC signals. To ensure that the sampling operator acting on v makes
sense. we assume that r and £ are continuous signals (or at least € £ RC). which is
reasonable in practice. This also ensures that we can sample e and y. We will analyze
sampled-data systems with bounded signals where the signal norm is the £, norm. £
denotes the space of real valued measurable functions on [0, oc) with the norm defined as
lzllco := esssup, |z(¢)] < o0. A belongs ta the class of causal norm-bounded structured
uncertainty with finite memory D(n). All results obtained will equally hold when A is

fading-memory operator mapping decline signals into decline signals.
D(n) = {diag(A1,---,Aq) : Ai € Ar}.

where \;: LLOARC — L NRC. A; belongs to the class Ag of linear causal norm-
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bounded finite memory perturbations. and

A
1] = sup 122 le= o
w#0  ||Z]lce

where ||A;]| is the induced norm.

The difficulty in considering the continuous-time behavior of sampled-data systems
is that it is time varying. A sampled-data system in this configuration. considered
as a system in continuous-time. is not time-invariant even when the plant G and the
controller Ay are LTT and LSI respectively. Instead, it is periodic with the time period
T determined by the time period of the sampler St and the hold Hr.

[n general, r and e may have dimension more than . i.e. the system is a MIMO
system. In order to simplify the notation. only the single-reference single-tracking-error
system will be discussed in the following. It can be shown that the necessary and
sufficient conditions for the MIMO robust tracking can be easily obtained from those for
the single-reference single-tracking-error system. Also even though only sampled-data
systems will be studied in the rest of this research, the obtained corresponding results
can be applied to general periodic systems.

The system in Figure 6.1 can be rearranged into the following general setting (see
Figure 6.2). where M. a hybrid stabilized system. includes the nominal plant ¢ and the

discrete-time controller A;. It is clear that M is a periodic linear stable time-varying

r e
M
g y

A

Figure 6.2 The generalized system
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system with period T. With the system setting described above. both input and output
signals of system M are at least right (or left) continuous signals. Therefore, we can
apply operator St on these signals for sampling purpose.

A conventional approach to the sampled-data system problems is to utilize the iso-

morphic lifting technique due to the periodicity (see [4]).

6.2 Approximation of the Sampled-Data System

Although the lifting technique can handle the periodic system nicely. the resulting
lifted system is infinite-dimensional. One such lifting technique will be discussed in the
next section. To deal with the infinite-dimensional system. we introduce fast sampling.
Figure 6.3 shows the approximate discrete-time system M obtained by fast sampling
the input and output of the sampled-data system M in Figure 6.2. St, and Hr, are
the fast sampler and hold respectively with the same period Ty = T/.V, where .V is an
integer. 7,&.€ and j are the corresponding sampled signals by sampler Sty -

After fast sampling both the input and output sides, we obtain an approximate
discrete-time system M = St MHr,. This resulting discrete-time system is a linear
periodic multi-rate system with period .V. Since M is linear periodic. the robust tracking
conditions stated in Theorem 5 in last chapter apply. That is M achieves robust steady-
state tracking if and only if sup;p(M.,) < L. where M{, = M) is defined by (5.19)
when p = ¢ = 1, the single-input single-output case.

The approximation depends on the choice of V. It can be expected that the ex-
act robust steady-state tracking conditions for the original sampled-data system can be
derived from the conditions for the approximate system as NV — oo. After this approx-
imate system is related to the original sampled-data system in the following sections.

exact steady-state tracking conditions for the sampled-data system will be obtained.
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M
r ri 7 é te e
—_— STN—--E-> HTN—— e STN—-—:- H71-V—_>
M
:"""HTN—H _’STN““:
OO Y
----STN‘ AT H7,'v<."
A

Figure 6.3 The approximate system

6.3 Steady-State Norm || - ||ss as Performance Measure

Sampled-data systems are considered as periodic time-varying systems in continuous-
time from the input-output point of view. The performance measure is related to the

measure of continuous-time signals.

6.3.1 Steady-State Norm: || - ||ss

For continuous-time signals, we consider the usual £.[0,20) space of essentially
bounded signals. Let £, be defined as the space of real valued measurable functions on

[0.0c) with the norm defined as
lzllc. := esssup |z(t)] < oc.
t

Let Lt denote the “tail” operator on continuous-time signal

r(t) t>T.
LT : (LTI)(t) =

0 otherwise.
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Analogous to the steady-state performance measure for discrete-time systems, a steady-
state semi-norm. or limit superior, of continuous-time signals can be defined as follows

and adopted as the performance measure for continuous-time case.

Definition 5 (The Steady-State Semi-Norm || - ||,;: Continuous-time) For a
continuous-time signal r € L. the steady-state semi-norm. namely ||z||ss. is given as
follows:

ll=llss := Jim suple(t)] = fim [|L7zlc.-
which is finite as long as r € L.

Now. the robust steady-state tracking for the system in Figure 6.2 can be defined in

the following:

Definition 6 (Robust Steady-State Tracking: Continuous-Time) The periodic
linear time-varying continuous-time system M in Figure 6.2 is said to achieve robust

steady-state tracking if
1. The interconnection of M and \ is L. -stable for all X\ € D(n).

»  sup ”P”ss < 1.
T AeDm)

6.3.2 System Set-Up and Lifting Technique

Partition M as the following, where each element M;; is again periodic with the same

time period T

e\ ( My My -+ Myng \ ( r\

/5 ./"[21 ."/[22 e -’VI'Z.n-H fl

Yn ) \-"‘/[n+l.l Mopr2 -+ Muprng J \ &)
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As discussed previously, we will deal with sampled-data systems by using the lifting
technique due to periodicity. The lifting operator W7 for the continuous-time case can
be visualized as cutting the continuous-time signal on [0.cc) into a sequence of pieces.
each is a real valued function on the interval of [0, T] (see Figure 6.4). Let [ i, 1y denote

the space of £.[0.T]-valued sequences. Suppose v € L.[0.). the lifting operator

N N W, N]”N/

B e —— l

0 T 2T T 4T 0 T T T 4T

v LS)
t-sampling

Figure 6.4 The lifting and ¢-sampling operator

Wr: £,[0.¢c) — [Z.(o.7] assigns to the signal v its lifting v = {v;}. which is given by:

for each k. v, € £..[0.7].
ve(t) == v(t+kT), 0<t<T. (6.3)
The norm is defined as
2lliz o 7y = sUP llzellcco.my < 0.

Wr is a linear isomorphic operator, its inverse operator W' is well defined, and
v = Wi'v. Notice that the lifting operator (and its inverse operator) preserves system

and signal norms. Also notice that the lifted signal {u;} is a sequence of real-valued
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functions over the interval of [0. T']. Each y; belongs to the infinite-dimensional space. To
deal with the infinite dimensional problem, we introduce the t-sampled version (shown in
Figure 6.4) of the infinite-dimensional signals. For a signal v € £, N RC. the t-sampled

version of the lifted signal v, is given by an [ signal, v' = {v}} and
vp 1= ult) = e(t+kT). (6.4)

where t is fixed € [0.T]. It is clear that vj € [ is a discrete-time signal which has the
same dimension as v. Since it is a discrete-time signal. the steady-state semi-norm for
this lifted signal is defined as ||v']|ss = lima oo | Lavli. -

Based on the definition of the lifted and ¢t-sampled version of signals. one can define
the corresponding one side (output side) lifted and ¢-sampled version for svstems (see
Figure 6.5). Given a linear bounded continuous-time system M mapping £, N RC
signals into L..(RC signals. M: w — v, with period T. the lifted and t-sampled

system M*': w — v'is defined as follows:
M (Mw)(k) = vp=(Mw)(t+kT). tisfixed € [0.T]. (6.3)

Clearly, M* maps L, NRC signals into [y signals. Following the similar argument
we used for the discrete-time case. the above defined system M* is related to a linear
time-invariant system, namely W!'W7' by the operator Wi'. Therefore, given the kernel
representation VM (¢, 7), a function on R x R, of the system M. the kernel representation

M*'(k,7), a function on Z* x R. for the newly defined system M is as follows,
Mk, 7) = M(t+kT, 7).
Also the induced norm is given by
o T
MY =S / |M*(k, 7)|dr. (6.6)
k=09

Now using the definition (6.5) of lifted and ¢-sampled version of systems, for each

element M;; of the system M given by (6.2), we lift and then sample the output of



L I 1 ] i
0 T T T 4T
— M L v
w
\ T T~ T I
0 T T 3T 4T
—_— M’ b y
w
T
0 | 2 3 4
—_— Mt ——— Ut
w

Figure 6.5 The lifted and ¢-sampled system

M;j at t; € [0.T]. Similarly. the resulting system M} maps L. N RC signals into /.
signals. Let ¢ = [t;.ts.---.tnq1] € [0. T)**, a real valued vector. After defining M for

each element of the system M. we define the corresponding lifted system M mapping

[r €1+ . &a]T to [efr, yi. - -+ yim]T as follows,
( eht \ My My L ML ( r
yr? M3 M3 ... M3y & _
o |\ M M, - M |\ &)

Given the induced norm defined by (6.6)., the continuous-time steady-state norm



matrir can be defined as follows:

(gl | 081 o M)
. M7, M Mk
M o | I | 1050 Ml | )
M e | UM o Ml

This matrix will play an important role in the conditions for robustness. From the
robust tracking definition. it can be seen that the robust tracking problem consists of
two parts: robust stability and robust tracking. The stability robustness of the system
in the presence of structured norm-bounded perturbation has been addressed in [24. 23].
which will be stated in the following. The solution for the tracking component will be
presented in the next section.

Define the following nonnegative matrix:

Ml ... Ml
M'_\j" = :
Ml o Ml

where to = [tg, -+ .tns1] € [0, T]". M2 is the lower n x n matrix of M.
A necessary and sufficient condition for robust stability of the system in Figure 6.2

is given by the following theorem.

Theorem 6 (Robust Stability) The interconnectior of the periodic continuous-time

system M in Figure 6.2 and A is L, -stable for all A € D(n) iff

sup p(MiA“) <l
ta €[0,T)"
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6.3.3 Robust Steady-State Tracking (|| - ||,; Case)

[n this section, it will be shown that the exact robust steady-state tracking conditions
for the sampled-data system can be derived based the continuous-time steady-state norm

matriz defined above.

Lemma 5 Let H: L. — [« be any norm-bounded linear finite memory operator. Let

r € L. Then

IHzllss < [IH[[|z]}ss- (6.9)

where |[H]| is the induced norm.

Proof: The proof is similar to that for the discrete-time case. o

Before addressing the exact necessary and sufficient robust tracking conditions. we
give the following two lemmas. The first lemma shows that the steady-state semi-norm
Il - |lss defined for the lifted signals is a continuous function with the sampling point ¢
as its variable. provided the original reference signal satisfies a certain condition. The
second lemma states that the value of the steady-state semi-norm for certain signals is

achievable by the steady-state semi-norm value for the corresponding lifted signals.

Lemma 6 Suppose f(x) is uniformly continuous on [0.oc). Let f* = {f'(k)} be defined

by (6.4). Then g(t) := || f]|ss is continuous on [0, T].

Proof: By hypothesis. f(z) is uniformly continuous on [0,00). It follows that for all

€ >0, there exists a 6 >0 such that
Vz,y>0, ly—-z|<d = |f(y)-fla)l<e
By definition (6.4). for all ¢, and ¢, € [0, T, |t, — t:] < 4. implies

|f9(k) ~ f= (k) <€, Vk,
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= |f (k)] < |ft=(k)] +€ Vk.
= sup |f*(k)| < sup |f*= (k)| +e.
k>R k>R
i t : tr(l
= ,}Lﬁr;o:glglf”(k)l S,}%EEE LFe (k)| + €.

= g(ty) —g(t:) S €.

Similarly. [t, —t.] < § also implies g(f;)—g(t,) < e. Thus |g(t,)—~g(t)] < €. V|t~ <d.

i.e. g(¢) 1s continuous. a

Lemma 7 Suppose f(z) is uniformly continuous on [0.0c). Let fi(k) := f(t+kT). t €

[0.T]. Then

”f”ss = ”ft”ss (6.10)

0<t<T

Proof: As in Lemma 6. let g(t) := || f*||ss- Then. g(¢) is continuous on [0. 7], which
implies max, g(¢) exists. Let L := max, g(t). It is clear that ||f]lss > ||f|lss for all
tef0.T]. e [Ifll 2 L.

By uniform continuity. for all € > 0. there exists a > 0. V4 = T for some integer

V such that

N ™
f

|z —yl <d=|f(z) - fly)l <
Now we divide [0. 7] by é and get NV points. Let L; :=g(i) < L. i=0.4.---.(N—1).
For each i, there exists a A7, such that
; €
sup |f'(k)| — Li < 3
k> K, 2
. € €
= sup (k)] < L,"*'; < L-{-;.
k>R, z Z
Let A := max;{A;}. Then

sup |fi(k)| < L+ Vi=0.6,---.(N = 1)d. (6.11)
k>K
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Again by uniform continuity and (6.11), for each i and ¢; € (i,i + §). the following is

true.

[f“(k) = fi(R) < Vk,

= f'6) < IfB)l+5 < L+e k>K

N
.

Therefore. it follows |f*(k)] < L + €. for all k > A", and t € [0.T], which implies
If(x)l < L+e¢ forall :>AT.ie. L <|fllss <L +e. Since e can be chosen to be
arbitrarily small. the proof is completed. a

Notice that the requirement of uniformly continuity is relative “strong”. For example.
the output signals of the hold are piece-wise constant for each time period and so they are
not even continuous. Obviously the equality (6.10) still holds for such right continuous
signals. [n this case. however. there is a bound on the rate of change of the signal except
for some discontinuous points. For such kind of signals. it can be shown that Lemma 7
still holds.

Assume the matrices Dj,. Doz, D3s and D33 of G in Figure 6.1 are zero matrices.
Since the system is a norm-bounded linear system. we conclude that signals e and y
have the property shown by Lemma 7.

Now we are ready to state our main results.

Theorem 7 Suppose M is a norm-bounded linear system shown in Figure 6.2. Let M,

be the matriz defined by (6.8). If

sup p(Mis) < 1. (6.12)
tef0,T]n+!

then the system in Figure 6.2 achieves robust steady-state tracking.

Proof: Again define the following matrices:

AL - MRl
M = : : : (6.13)

VAL - Ml
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as before. where {5 = [t2,---.tnt1] € [0.T]". By Lemma 2, sup;p(M.,) < 1 implies
sup;, p(Mff) < 1. This is exactly the same necessary and sufficient condition for robust
stability of the system stated by Theorem 6.

The tracking part of this theorem can be proved by contradiction. As discussed above.
in this system setting, signals e and y satisfy Equation (6.10). Suppose [¢e|[ss > L. for
some \ € D(n). By Lemma 7. ||e]|ss > | implies that there exists a t] € [0.T] such
that ||e'T]|ss = [[e]lss > 1. According to the Equation (6.7) and the triangular inequality

property. it follows that

L<|l€llss < NIMiirllas + I MILINEN s + - -

+ ML Eallss- (6.14)

By the fact that [|A|| < L. then [[€]lss < [lyjllss- V) € [L.n]. Again. Lemma 7 implies

that for each j. there exists a tj,; € [0.T]. such that

A

!'
[6illss < Mysllss = g Mlss

t? t*
< MG s + MM ss + -+

¢
+ M ll1Ellss- (6.15)
Equations (6.14) and (6.15) together imply that £ = (1.}|E]lss.- -+ |€nllss)T > 0 is

a solution to + < M z. where {* = [t},t5,---.(3,,] € [0.T]**!. This implies that

p(ME;) > | for some £, in contradiction to the hypothesis. This completes the proof.0

Lemma 8 Let M be the sampled-data system in Figure 6.2, which includes the LTI plant
(' and controller Ky. M is a bounded operator on the subspace of L.. Y\ RC signals. Let
M = Sty MHr,, 7 = Sryr, where Tx = T/N, N > 0 is an integer. Then, forr, a

uniformly continuous signal, € L,
Jim I MF|[os = || MT|ss- (6.16)

where ¥ = St,r is the sampled signal of r.
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Proof: See the approximate system in Figure 6.3. Let 7 := Sy r. 7 := Hr,F. Since r

is uniformly continuous. we have

‘\}Lr’r;o |7 —rllss = 0. (6.17)
It follows that
ISty MF|lss —  ||STy Mrl|ss
< STy M(F = 7)|lss-
< Sty MINE = 7)llss-
which implies that
Jim (1St Mifls = Jim [[Sry M7 (6.13)

By the setting of M. it is clear that Mr is uniformly continuous. if r is. Therefore. the

following is true

Jim (107l = Jim [1Sr, M.
= Jim 1Sz, Mril.

= [ Mrilss-

O
In the following, we will discuss an approximation procedure of sampled-data system.
Let { = [t1.t2.- -+ .taa] € [0, T]**!. For a given periodic system M and its partition

representation shown in (6.2), the corresponding lifted system is as follows:

([ wmy wy L oMb )

Mt— . .‘/Izti le[2t§ .o K [‘.5.2n+1

(6.19)

y[intt L fintt Attt
\ "/[n-{-l.l ."‘/[,H_lvz ... -"/[n-f-l,n-f-l
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and its steady-state norm matrix is given by,

[ iMbrle | 1M1 o 1M
MB27ss M2 ... M2
M.tss = ”Z 21 | ” 22” ” ..n+l” (6.’20)
UMl | 1M e 1Mt

Let fast sampling period Ty = T/N. Consider the approximated system given in
Figure 6.3. The resulting discrete-time system is periodic with period .V. Theorem 3
applies to this approximated system.

Now. let k;y be the closest approximation of ¢; € [0.T]. kiy = iy *(T/N) for some
integer [;y € [0. N—1]. The choice of /;5 depends on the point ¢; as well as the value of .V.
Obviously. we have k;y — ¢; as .V — oo. Similarly, we define ;L.[‘-lj'f‘" as the corresponding
lifted discrete-time system of .":[ij. ./V[f;“’ denotes the approximation of the system -W,-';.

Now. the overall approximate system Mi¥ of M! in (6.19) is given by

( MRy My e MY )
“rla vy l {
.‘/[2-1’\ "[ ~ AR "[22’:'+[ (6.21)
ln n ¥ lﬂ v
M it M nit2 o0 MR
and the corresponding steady-state norm matriz M’N is as follows:
! 115 -l
(s, | NS ) )
“rlan < l ; 7y, y v
| Mo 7] s M5l ... ”1"[22:-{»1” - l\j«[ll l\fIIZ (6.22)
. ' ' M, My,
n W ln R ¥ ln W
IV Fllss | IMZRE N o MRS
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where Iy = [lix.lox. - lag1.n] € [0,V —1]"*! is the closest approximation of f =

(b1 b2+ tngr] € [0.T]"F1.

A convergent approximate procedure to the system norm has been discussed in [3].

Lemma 9 Suppose M is a norm-bounded linear system. which maps L.. \RC signals
into L, N RC signals. Let M* and M'¥ be defined similarly as above. Then the following

statements are lrue:

i (V= (A (6:23)
-l R Ko, -
I G R Ll (6:24)

where Ky and K, are constant depends on the dynamics of the plant (.
Now. we are ready to present the following theorem.

Theorem 8 If p(ML,) > | for some { € [0, T|"*". then the system in Figure 6.2 does

not achieve robust steady-state tracking.

Proof: We will prove it by using the approximate system (Figure 6.3) by fast sampling
of the sampled-data system discussed above. According to Theorem 5. the approximate
system M achieves robust tracking if and only if sup;, p(l\?Ii-;’) < I

By Lemma 8 and Lemma 9. the steady state norm matrix 1\7[13;’ converges to M¢,
component-wisely when .V goes to oc. Since each component in 1\7[5,;‘ converges to and
bounded from above by the corresponding component in ME_, we can choose a sequence
of NV such that the convergent sequence of the each component is a nondecreasing se-
quence.

By the discussion above and the continuity of spectral radius function, the hypothesis
p(M:,) > 1 implies there exists a A" such that for all ¥ > K, p(1\~/[';§) > 1. Similar to

Equation (6.13), define IC/II_{“’ which is the lower n X n matrix of I\?Ii;’ where (ay =

[121\/7 Tt ln+l.1V] € [0- V- 1]71
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By the proof of Theorem 5 in last chapter for periodic discrete-time systems. p(l\7[£~;’) >

1 implies either.

I. p(l\?[l,;(“") > 1. therefore we have p(M’;\‘}) > | by (6.24) and monotonicity of the
spectral function of nonnegative matrix, where {x = [ta,---.¢n41] € [0.T]". This

means that the interconnection of A and M is not robustly stable.

2. Or, there existsa A € D(n) such that |[&]|,s > L. i.e..no robust tracking. According

to the system setting in Figure 6.3. this implies ||é||ss > 1 with input r.

The approximate input signal # can be arbitrarily close to the input signal r of the
sampled-data system in the sense of the steady-state semi-norm. From the proof of
Lemma 8. we have limy_o ||[F — rllss = 0 = limyoa ||é€ — €llss = 0. where € is the
tracking error of the sampled-data system with r as the input reference. By a similar
proof in [26], the worst-case steady-state tracking error of the sampled-data svstem is
given as following provided that p(Mz;) < L:
sup [[€[ss = My + Muo(1 — My,) ™' My, (6.23)
D(n)
It follows that supp,, il€]lss is nondecreasing since the sequence of each component of
1\7['3;? is nondecreasing. Therefore. for the second situation discussed above. there exists
an integer .V large enough such that ||é]|ss > 1 implies |le]lss > 1. A continuous-time
uncertainty. \. can be constructed from A by letting A := Hr,ASt, (see Figure 6.6).

[t follows that there exists a A defined as above such that the system in Figure 6.2 does

A
Yo y ~ ] % P g
5, [ 4 A |- Hy, ==

Figure 6.6 An equivalent uncertainty
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not achieve robust tracking when r is the tracking input.
Now. we complete this proof by showing that A constructed above belongs to D(n).
By the assumption of the system. y € L. N RC. Then. |[y]ls > |7llx and [|€]lx = ||€]lx.

which implies ||A|| < 1 as long as ]|A]| < 1. This completes the proof. a

6.4 Steady-State Norm || - ||.s as Performance Measure

Robust steady-state tracking conditions are derived in last section by using the
steady-state norm. || - l|ss as the performance measure. However, the results are re-
stricted to certain systems as described above. The reason is that in general we do not
have |le||ss = sup, [[€!||ss though the equality holds when e is a uniformly continuous
signal. The assumption in the system setting of Dy, Do3. D33 and Daz to be zero ma-
trices is relatively strong. This assumption simply ensures that the output signals of
the system have the property described by Lemma 7. In order to drop this requirement

posed on the system. another steady-state norm is introduced in the following section.

6.4.1 Steady-State Norm: |- ||

Notice that the lifted signal € is a discrete-time signal. The steady-state norm, ||-||ss-

for €' is given as.
le‘llss == Jlim || Lceilli. (6.26)

However. with the steady-state norm defined by (6.26), the signals {e’: ¢t € [0. T]} may
not capture the property the original continuous-time signal e has in the sense of steady-
state norm. Consider the following example. e is a continuous-time signal as shown in
Figure 6.7. e(t) = 0 except for the triangles with peak value of 1. The width of the
triangle base, 1/k, goes to 0 as k goes to co. It is clear that ||e||,s = 1 while [€!||ss = 0.

for all t € [0.T] because limp o || Li€'|li~ = 0 for all t € [0,T7.
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I 172 I’k

Figure 6.7 An example: || -||ss vs. || -]les

To retain the steady-state norm property of the continuous-time signal. a new defi-
nition of the steady-state norm for lifted signals is introduced in the following. Instead
of defining the steady-state norm of the discrete-time signal e’ by only investigating its
discrete-time values. this new steady-state norm is defined for €’ by studying its behavior
in the original continuous-time signal.

First define the following intervals. For ¢t € [0.7]. 0 < 6 < T/2. let

t—9d.t+46] if [t—6d.t+d]C[0.T].
I[t.8]= ¢ [0.t+ 4] if t—8<0. (6.27)
[t —4.7) if t4+6>T.

Let L. [[t.d] denote the space of L. functions on interval [[t.d]. and IF_y, 5 the
space of L I[t.4] valued sequences. Define the lifting operator W,s: L,.[0.00) —

IZ. 1.5 as follows. For e € L[0.00), Wi se := {ek*}72,, where

N>
(V3]
—

eij‘s(r) =e(r+kT). telt.d]. (6.:
The norm of {e°} =: e is defined by
”et"g”[ =sup sup |e(T + kT)|.
k relts]

Note that €;* € L. I[t, 8] takes values over the interval [[t,8]. Each e’ contains infor-
mation of € in the interval I[t,8]. The signal e** = {e%’} will be studied in the rest

of this research instead of the discrete-time signal ¢! = {e}}. Similarly, the semi-norm:
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l€%|lss := limp ooc || Lae®®||s is well defined. It can be considered as a positively valued
function of § and decreases as é does. Therefore the limit exists as & — 0. and this limit

is defined as the new steady-state norm.

Definition 7 (Steady-State Semi-Norm || - ||.s) Suppose € € L, is a continuous-
time signal. Let €' = {e.}, I[t, 8] and ** = {ei__"s} be defined by (6.4). (6.27) and (6.28)

respectively. Then the steady-state semi-norm || - ||.s is defined as follows:
t -— |i M ot 9
ll€flles == lim lim [[Lge™;. (6.29)

The difference between the above two definitions of steady-state norms. ||e|[.s and
i€l ss. bears analogy to the difference between the limit value lim,, €(¢) and the value
e(to) of the function e at the point ¢y. The || - ||.; norm is defined by the continuous-time
signal’s behavior at the neighborhood of the point of interest rather than just by the
value at the single point itself. The single point value is not relevant in this definition.

Notice that for a uniformly continuous signal e. [[e||.s = |[€'[lss- Now. let us use
the new steady-state norm || - ||.s to measure the signal in Figure 6.7. At ¢ = T.

[[t.8) = [T — §.T) as defined above. then ¥d > 0. limg o || Li€"*||s = L. It follows that

=1 = llell,, while l|eT}l,, = 0 because cT(k) = e(kT) = 0.

Lemma 10 Suppose e is a continuous-time signal € L. Let steady-state semi-norms.
Il - llss and || - ||cs, be defined as above for the original continuous-time signal e and the

lifted signal €' respectively, there exists t= € [0.T| such that

(6.30)

leflss = lle™ lles-

Proof: As shown in Figure 6.8, we start with the interval /o = [0, T]. Let e’ := {e{},
where €°(7) = e(r + kT), 7 € Io. The norm is given by |[Lxe®||;, = sup; SUPyey, l€(T +
kT)|. 1t is obvious that limp o [|[Lx€® ||z, = |l€llss- Then divide each of the intervals

of length T into n subintervals of length T//n, where n is an integer. It is clear that
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there exists a subinterval, namely [,. such that limp .~ |[Lxe’|[;, = |[€]|ss- where et is
similarly defined as above. Once again. we can divide the subintervals /, further into

n sub-subintervals of length T'/n2, and there exists a sub-subinterval, say [,, with the

following equality limg_, || Lx€?|r, = |[€]|ss-
e AT~ I: Teee-- - I:
| Tl | 1
0 I, T I, 2T (k-1T T kT
Figure 6.8 The new steady-state norm: || - ||cs

Repeating this process. we obtain a sequence of intervals with [y D [} D[, D --- D
[; D ---, and the corresponding sequence of real numbers with T'/n > T/n? > --- >
T/n’ > ---. These intervals are nested and the length of these intervals T'/n’ — 0. Since

each [; is closed and bounded. then
[:=()1; #o.
J=0
Since [ C [, for each j, limj_« [; # o. However. the limit. lim;_,, [;, can not be an
interval because the length (7/n’) of the the interval. I;. converges to 0. Therefore
I; converges to a unique point ¢t* € [0.T] as j — oc (see a complete proof in [7]).
Since limp s ||L;\-e[J||11 = |le||ss holds for each j. the limit. lim;_. limga, [[L;\'e’o'[[h.
exists and equals the constant ||e||ss. Since [, — ¢ as j — oc, we have |[e!|. =

limj_yo lima o0 || Lie" ||z, = [|€]lss. This completes the proof. O

6.4.2 Robust Steady-State Tracking (|| - ||.s Case)

Let M be a linear norm-bounded system mapping L. (1 RC signals into L., | RC sig-
nals. With the lifted signals y* and y* defined by Equation (6.4) and (6.28) respectively,

one can define the following systems:
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L. M*': mapping L. NRC signal r into y* € [.. M'r = (Mr)' = y'.

2. M**: mapping L, NRC signal z into y** € IZ sy M = (Mz) = yts.

In order to derive the robust steady-state tracking condition, we need the following
two lemmas. The first lemma shows that || M*]| is a continuous function of ¢ over the
interval [0. T']. Using this property, we will show in the second lemma that the triangular

inequality holds for the steady-state semi-norm. || - || s-

Lemma 11 Let M be the sampled-data system in Figure 6.2. which includes the LTI
plant G and controller Ky. M is a norm-bounded operator on the subspace of L., RC
signals. M" is the lifted operator defined as above. Then f(t) := |[M'| is a right

continuous function on [0.T]

Proof: Suppose ¢, and ¢; € [0.T] and ¢; < ;. We need to prove that ¢, — ¢, =
[IM*|| — ||M*"]|. Since it is linear time-invariant system. the plant ¢ maps right
continuous signals into right continuous signals. Suppose r € L, NRC. then Mz is
right continuous as well. By definition of M‘r. we have ||M?2zr — M z|,, — 0 as

ty — t,. It follows that when ¢, — ¢;.

WML — MO

M2 — M| =sup 0.
r#0 llzll~
This implies that || M2 = ||M"|| as t; — ¢;. a

Lemma 12 Let M be the sampled-data system in Figure 6.2. which includes the LTI
plant G and controller Ky. M is a norm-bounded operator on the subspace of L., RC
signals. M" is the lifted operator defined as above. Let r € Lo RC. Then

M 2l < 1M e ese (6.31)

where ||M!|| is the induced norm.
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Proof: Let [[t.d] be the interval defined by (6.27). For 7 € [[t.d], consider the lifted
signals V["r € [, of Mr as defined above. Because of the linearity of the operator WM™,

for all = € I[t. 4],

ILwM 7zl < ||Lm M7 Loclli + || Ln M7 Po|li

< MY WLnzllex + 1 Ln M Parlis.

Now take sup on both side over [[t. 4],

sup Nlm M x| < _max HMT) - | Lax)lce + sup ||Ln M7 Pyr|i<.
relft.5] €l[t.d] rel[t.d]

The maximum exists because of right (or left) continuity of ||W7|| on [0.T] by Lemma
11. Then. first let m go to oo, the term ||L, WM™ P,x|li~ goes to 0 since M™ is a finite
memory operator. And finally. take the limit as n and § go to o and 0 respectively. by

definition of the steady-state semi-norm in (6.29)

M z||es < IIMF| - | x]]ss-

Notice that lims_,o max e, 5 || M7|| = || M*|| because of right (or left) continuity of [|M7||.
a
With the new steady-state semi-norm given by (6.29). we define the following steady-

state norm matriz:

(Mirle | IMBL oo M
v v Art2 vrt2
Més = 1\“/[11 1\.4[2 = ”-‘[217'”& II-szII ”‘"rﬂ-l” (6.32)
M'Zl M22
1058l | UM e (M

Now the main results are ready to be presented. In the last section. there are assump-
tions on signals and the D matrix of the system. However, as the following theorems
show by using the new steady-state norm defined above. similar results hold without

these restriction on the system setting.
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Theorem 9 The system in Figure 6.2 achieves robust steady-state tracking if

sup p(ML,) < 1, (6.33)

t

where £ € [0, T]"t1.

Proof: The proof will go through similarly as in the proof of Theorem 7 if the following
is noticed. Suppose [|¢|lss = L. By Lemma 10 this implies that there exists a ¢] such

that ||e‘i[|.s > 1. According to Lemma 12 it follows that

U<l ller < NMEErlee + IMEINEN oo + - + 1ML 116 ls: (6.34)

By the fact that [|A]] < 1. |&]lss < lly;llss- s € [1,n]. Again by Lemma 10 and Lemma 12.

for each j. there exists a ¢7,,. such that
t* [ t* t* .
I€illss < My lles S UM Tlles + N MG 20N ss + - -+ + M st MllEallas. (6.35)

Equations (6.34) and (6.35) imply that there exists {* = [¢].¢5.---.£,,] such that
(L || [[ss- - - - [I€allss)T is a solution to r < Mi.z.r > 0. Therefore. p(ME) > 1. a

Following the similar modification and using the same argument in the corresponding
proof of Theorem R. one can similarly prove the following theorem. The proof will be

omitted here.

Theorem 10 [fp(l\:/lis) > 1 for some t, then the system in Figure 6.2 does not achieve

robust steady-state tracking.



CHAPTER 7 COMPUTATIONAL ALGORITHM AND
SIMULATIONS

7.1 Computation Algorithm

The original sampled-data system is a linear periodic time-varving hybrid system
with period T. The robust tracking problem is solved in the last chapter by using the

lifting technique. However. the result is based on the following so-called steady-state

norm matrix

[ ingtirl | IMs0 . 1Ml )
IR " " 0 Y T T -
‘ MZI M22 :

N T R

and the obtained robust tracking conditions in Theorem 9 and 10 are ~infinite dimen-

sional conditions,”

sup p(ML,) < 1,

t

where { = [t|,ts,--,tns1] € [0, T]**'. The supremum is taken over the interval [0, T]
for each ¢;. The system induced norms in 1\7[“_.3 is not readily computable, and neither is
the robust tracking conditions due to this infinite dimensional property.

As discussed in [35]. this problem can be solved by approximation rather than an

exact procedure. The infinite dimensional system can be approximated by fast sampling,
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say with period T/N. N > 0 is an integer. Therefore. the robust tracking problem of
the original sampled-data system is solved by the approximation of the robust tracking
problem of the approximate discrete-time system. As shown in Figure 7.1, the resulting
approximate system is a multi-rate periodic discrete-time system with period .V from

the input-output point view. The exact robust tracking conditions are proven after being

M
r e é e
_____ ,HTN_’ _T SEV--—--—»
M
= Hry, SR
I e i
e Loy
T 1Sn[ A Hy, =

Figure 7.1 The approximate system

compared to the robust tracking conditions of the approximate discrete-time system. As
in Section 6.3.3. let Iy = liv:lan, - -+ lag1.v] € [0. N=1]"*! be the closest approximation
of { = [ty tser - tapt] € [0.T]**'. Define the steady-state norm matrix M¥ of the

approximate discrete-time system as follows:

(A | g L ey
. My V28 ... M
iy o | VA | L) )
Al ~ v
\“V -qfxllv les | 1M, r-fllz\’” Tlln-t-l”/

Obviously, M’C;' is computable since each element of this matrix is. The computation
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algorithm for sampled-data systems is given in the following by showing the convergent
upper bound and lower bound from the approximation.
By Lemma 9, each element of the induced norm in the steady-state norm matrix

M:_ is bounded by the corresponding induced norm of the approximate system. i.e..

cs

- K Ko, ~i. -
IME N < NMEN < 7 + (L+ UL (7.3)

Ay and A’ only depend on the dynamics of the nominal plant not the discrete-time
controller. This is because the discrete-time controller only effects the hvbrid system
at the sampling instants. while the interstate is governed by the nominal plant. By
Equation (7.3). we have lower bound and upper bound for [|.V/}|| and clearly both
bounds converge.

The elements of induced norm in (7.1) are computed by the convergence discussed
above. Obviously, the steady-state norm term || - ||.s in (7.1). is not readily computable
either. However. if we only impose the requirement of uniform continuity on the input
signal r. which is reasonable in practice, without changing the setting of the system. we
have [|-||cs = || - ||ss and the latter can be computed by approximation. Even though ris
required to be uniformly continuous in this case, steady-state matrices (6.8) and (6.32)
for the || - ||ss and || - |[os semi-norm cases respectively still remain fundamental different.
In (6.8). not only does r need to be uniformly continuous but also the corresponding
D matrices of the system are required to be zero matrices. However. for (6.32). when
we discuss computation, the only requirement is imposed on r . the input reference.
Actually. as discussed in last chapter, we can relax this requirement on r a little.

In the following, we will show the convergent process of computing the semi-norm,

Il - llss. Lemma 9 was prove in [3] by giving bounds of the following induced norm:

- A, -
[[(I = (HTySTy) L)I‘R(HTNSTNM)“ < v (7.4)

where ( HTNSTN)‘L denotes the left inverse of (H7,S7, ) on the range of R(M). A, is a
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constant determined by the plant G. It is clear that we have

”;‘"[!‘ - HT.\'ST.\' “'[HT.VST.V"HSS < ”HT.\'ST.V Mr ~ -‘/[r”ss +

+ [Hry STy Mr — Hry STy MHT ST T ||55-
By inequality (7.4). it follows that

[HrySte Mr — Mrilss < (1 = (H1yS1e) ™ ) Resry sry I HTy ST M35

A, .
< _”HTVSTV "[r“aa ( "'3)
Since r is assumed to be uniformly continuous. then
. T
lr — HryStyrllss < A FIrllss:
where A’. a constant. is the bound of the derivative of r. Therefore.
(HrySTe Mr — Hr STy MHT STy |ss
< N Hr St MlIr — HrySTyrllss
. T
< KMl
Tk [
< K|S+ 0SS e il (7.6)

where the last step is from Lemma 9. Let M := Sty MHr,. It follows that

T[A I
ISt Mrlls < K[+ 0+ 520l +
+ ”HTNSTN-"‘/[HTNSTNf'”ss (7.7)

Combining inequalities (7.5), (7.6) and (7.7), we obtain,

|Mr — HTVSTVI"[HTNSTNT'””

T 1A i [\u
s by [% +(1+ —2 )M !l] 7 llas + <7 Mz STy M
[a T [k, A
< (LK —[v+(1+—2 lwn]urn”
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K,
+ _V'-”HTNSTN '/‘/[HT.VSTNr“&’
R, ,.TTh, Ry, - ]
SRS 5+ (L SRl +
K,
+ (1L + T)”HTNSTN./WHTNSTNI‘””

A, .T[K Ky -
(14 <2 B[ 5+ (0 + ] s +

vV NLN
)”"v[F”ss’ ( . )

= [[Mrllss < (14

IN

R,
N

=1
oL
—

+(1+

where 7 := St r. The last step follows by using the fact. || Hr,|| = 1.

By the convergence as shown in (7.3) and (7.8), all the elements of 1\7[3’ are convergent
to the corresponding elements of MZ_ as IV goes to oc. Therefore, the spectral p(1\~/I‘;-;‘ )
will converge to p(l\?[is) as .V goes to oo because of the continuity of the spectral radius
function.

Furthermore. applying Equations (7.3) and (7.8) to the steady-state norm matrix
M. we obtain a lower bound and an upper bound for each element in MZ,. and both
lower and upper bounds converge as the fast sampling period goes to 0. This means that
the robust steady-state tracking condition, p(l\?Iis), can be approximated and computed
by the discrete-time case. p(l\/~I£g’). at the convergence rate of 1/.V. where p(l\~/I£-§) is a
finite dimension problem and is computable.

For the sake of the simulation algorithm, besides the convergence issue, we are also
interested in how we can choose a sequence for NV to make the convergence more efficient.
Of course, one can let .V be any monotone increasing sequence to get the convergence.
However. some improvement can be made to make the convergence process faster. Let’s
see the following example. Let Gy denote the discretized and lifted nominal system
with fast sampling period of T/N, My the corresponding close loop system which is a
LSI system (see Figure 7.2).

Let (Afy.[Bisy. B2y,]) be the corresponding system matrices of the discretized sys-

tem.
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Figure 7.2 Discretization and lifting of the sampled-data system

Apy = eAT/IN

T/N T
B, = / ed By, Bay, = / e™d, By,
4]

0

where (A.[By, B,]) are the system matrices of G. Notice that matrices By, and Bsy,
act on different rate signals, say fy and f, respectively, if .V # 1. When .V = I. no

lifting needed. We have &; and M, in the following forms respectively:

[ ] [ ]
Ap | Bip Bap A [ Bi + By, ]
G, = Co | Dguu Dgra |- M = Bj,
| ng D_,,g; Dgzz J | Cl Dll i

where 4, By, B21,C) and D,; are certain matrices obtained for the closed-loop system.

Then the impulse response is

Bu+ B Bii + By,
Dllv Cl[ o H ]e Cl-"{[ " o ]7

B2l
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Now when .V = 2_ lifting is needed, and the systems become

i T
‘-lfl [ -4nglf2 Blf2 ] Bzfl
G, = [ Cgl ] D_qll 0 Dng
Cadp CaBip, Do Co1Bag, + Dgr2
I Cg2 [ Dgay 0 ] Dg2: )
F | [ Bu+ ApBiy, Bip ]
By, 0 M;
."/[2 = =
[ C[ ] [ Du 0 } .‘[22
* * *

Notice that [, By, Bip] and B, act on the same rate of signals now. The

impulse response is

l'Du 0] [ Cy ] - Bu+An By, Big ]
l' * *J * ) Bgl 0

r C Bu+ALB B
: ]4[ MR T ] (7.10)
S le 0
Notice that
e
B, = /" e’*drB
ol z
= ["etdrB+---+ (”lre”‘dTB
0 "‘;2’
_ A Im-UT 4 -
= ([+e%2" + +e % 7)By,, (7.11)
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where m = —:,{2; is an integer. Therefore [|M}]| = || M}]| because Byy, = (I + Ay,)Biy, by
(7.12). Comparing the impulse responses (7.9) and (7.10). we can conclude that || M| =
max=12 || M5 || > [|Mi]|. It can be shown that ||My,]] = maxi<k<m |ME, [ = (| My, ]I-
where m = %’7; is an integer. since By, = ([ + Ag, +---+ .-13'?‘;2_;[)31,'_,,2 .

Therefore we can choose a sequence for V. {.V;, Vo.--- .. V;.--- V.- --} such that
N < Vjif i < 5 and —\\-,1- is an integer. In this case. the resulting sequence of the ap-
proximate induced norm is a monotonically increasing sequence. meaning this sequence

converges to the exact induced norm for the sampled-data system from below and con-

verges more efficient than if we just arbitrarily pick .V.

7.2 An Example and Simulation

In this section. we will give an example of a tracking problem of a sampled-data
system to compute the steady-state tracking error subject to system uncertainty.
As shown in Figure 7.3, the nominal plant F is given by

l
PO(S)zs-{-l'

The system uncertainty is given as multiplicative uncertainty of the form

P(s) = B(s)(1 + Wi(s)A).

..........................................

r e l y
Ky ~ P, ~O=

Figure 7.3 An example: Robust steady-state tracking
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where the uncertainty is norm bounded with [[A]] < 0.25. The weighting function
W, = 1. The discrete-time controller A is designed for the nominal plant Py to force
the plant to track the reference input r. a unit step input.

. 10z —0.3
hy(z) = e

=1
The discrete-time controller works well for the nominal plant (see simulation in Fig-

ure 7.4). The steady-state tracking error is zero due to the integrator in the controller.

0.8t

0.6

04t

02k

Tracking error

-0.2r

Time

Figure 7.4 Steady-state tracking error: Nominal case

In the following, we will shown how this sampled-data system performs when system
uncertainty is considered. First, the steady-state tracking error is computed. Table 7.1
shows the lower bound (BdLow) and upper bound (BdUp) of the tracking errors ob-
tained by computing the corresponding approximate system at the fast sampling rate of
T/N. when N = 8.16,32 and 64, respectively.

One can see from the computation results in Table 7.1, the computation process is

converging, and the tracking error lies somewhere between .7935 and .8141. This means
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that this is not a good design for robust tracking since the system will result in an error

of about 80%.

Secondly. we do simulation for this system. The uncertainty is given as a gain slider
in SIMULINK taking values between -0.25 and 0.25 (dash in Figure 7.3). The simulation
result is shown in Figure 7.5. One can see that the system under this uncertainty at

least has the tracking error of 66.72%. which is below and close to the result obtained

by computation.

Table 7.1: Steady-state tracking error

N = N=16|N=32|N=¢64
BdLow | .7771 .7863 L7911 .7935
BdUp | .9506 .8704 3325 S141

a8

06

tracking etror

~0.4}
-0.6r
-08 2 . : —_ "
10 20 30 40 50
time

Figure 7.5 Steady-state tracking error: with uncertainty
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CHAPTER 8 CONCLUSIONS

In this part. robust tracking for both discrete-time systems and sampled-data sys-
tems has been addressed with the presence of structured norm bounded finite memory
uncertainty. Appropriate steady-state norms, || - ||ss for discrete-time and || - ||, for
lifted continuous-time signals. have been defined and adopted as steady-state tracking
measures. Based on those steady-state norms, the so-called steady-state norm matrices.
1\7[53 and ML, . have been constructed and then robust steady-state tracking conditions
are derived in terms of the spectral radius of those matrices. Similar conditions can be
obtained for general periodic systems and MIMO systems. or multi-tracking systems.
A convergent approximate approach and computation algorithm are given to solve the

steady-state tracking problem, and an example and simulation are shown as well.



PART 1II

ROBUST AIRCRAFT PITCH CONTROL



CHAPTER 9 INTRODUCTION

Robust control techniques are applied to the aircraft control. Due to different fight
conditions, the flight model varies accordingly with certain parameters. such as weight.
center of gravity, etc. For the purpose of applying robust control techniques. the air-
craft dynamics is modeled as a linear time-invariant system plus uncertainty due to the
variations.

‘H. and p techniques have been developed as powerful tools in analysis and synthesis
for system robustness. H. control is a frequency-domain synthesis theory that was
developed to deal with plant uncertainty and unknown system disturbances. The H.
norm captures the induced operator norm when £, signals. or bounded energy signals.
affect the system. The H. norm. as a measure of the system energy gain. is given by the
peak value of the transfer function in the frequency domain. Indeed for a stable transfer
function G/(s), the H.. norm is given by ||Gll« = sup, |G(jw)]. Dolye {l4] presented
an earlier state-space solution to the H., problem. Glover and Dolye [20] treated the
detailed derivation of the H,, solution for general cases. The results and techniques
developed in Dolye. Francis, and Tannenbaum [15] have generated more interest in
applications of H. methods.

Based on the H., control theory, singular values have been developed as p-analysis
and synthesis tools for the robustness and performance of feedback systems (see [2]). u
is defined as a measure of the smallest structured uncertainty that causes instability of
the closed-loop system. p-analysis gives the level of robustness of the system that can

be assessed, while y-synthesis determines a controller such that the singular value (u) is



minimized.

The objective of our research is to apply these robust control techniques to optimize
control system performance when the aircraft model is subject to variations. The prob-
lem focuses on the longitudinal (pitch) attitude control problem when aircraft weight
and center of gravity are unavailable as control inputs. The weight and center of gravity
of the aircraft can vary throughout the duration of a flight as well as from one flight
to another. These two parameters significantly affect the pitch moment and elevator
effectiveness of the aircraft. A longitudinal attitude robust control algorithm is designed
to provide consistent performance throughout the flight regime at varying weight and

center of gravity locations.



CHAPTER 10 AIRCRAFT DYNAMICS AND
PERFORMANCE CRITERIA

As we mentioned before. the aircraft model varies with parametric variations such

as weight and center of gravity in our case.

10.1 Aircraft Dynamics

Generated from a full six degree of freedom nonlinear aircraft model. nine linear
state space models are given as the dynamics of light commercial aircraft (see [1]). The
nonlinear model is trimmed under level flight (A = 0), zero longitudinal acceleration
(U = 0) and zero pitch rate (Q = 0) constraints. With these constraints. the nonlinear
model is trimmed at three different flight conditions: low-altitude/low-airspeed. middle-
altitude/high-airspeed. and high-altitude/high-airspeed. At each of these three flight
conditions. three linear state space models were generated: heavy weight at forward cg.
medium weight at middle cg, and light weight at aft c¢g. The flight conditions for the
nine linear models are listed in Table 10.1.

The resulting nine linear models all have five states, three inputs and six outputs.
States:

ri:  Theta (0, rad), pitch angle;
a0 @ (é, rad/sec), pitch rate;
r3: U (meters/sec). component of inertial velocity along body X-axis:

ry: W (meters/sec). component of inertial velocity along body Z-axis:



)
[SV)

Table 10.1: Linearization points for linear state-space models

Case # | Alt (ft) | IAS (knots) [ Weight (lbs) | CG (%chord) | Class (wt/cg)
1 5,000 114 10.000 0.300 Mid/Mid

43 5,000 98 7.464 0.384 Lt/Aft

57 5,000 123 11.800 0.228 Hvy/Fwd

7| 20,000 250 10.000 0.300 Mid/Mid

49 | 20.000 250 7.464 0.384 Lt/Aft

63 | 20,000 250 11,800 0.228 Hvy/Fwd

14 | 41.000 245 10.000 0.300 Mid/Mid

56 | 41,000 245 T.464 0.384 Lt/Aft

76 | 41.000 245 11,300 0.228 Hvy/Fwd

rs:  Altitude (feet).
Inputs:
u;:  Elevator Deflection (4. deg):
uy: U Disturbance (meters/sec). longitudinal wind disturbance:

uz: W Disturbance (meters/sec), vertical wind disturbance.

y1: Theta (8. deg). pitch angle:

ya: Q@ (é, deg/sec), pitch rate;

ys: V. (g). normalized acceleration along Z-axis:
ys:  V: (g), normalized acceleration along X-axis:
ys: True Airspeed, Tas (knots);

ys:  Altitude (feet).

The aircraft dynamics. along with the elevator actuator dynamics, are shown in

Figure 10.1. The pitch command ServoC'mdD, generated by the outer loop, applies to
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the aircraft dynamics through the integrator and the servo model, which are given. An
elevator deflection limit of +/- 5 degrees is imposed on the output of the actuator and
then applied to the aircraft model. Longitudinal and vertical wind models. the Dryden

wind models (see (1]), are first-order and second-order transfer functions respectively.

Integrator Servo Model Limiter Longitudinal AC
! DelE D I
6.y D 6s + 1 625 5 T/— Theta (8) D
2 . QDps
6s s+ 35s + 625 /_[ s STATE |

N, G

W Gust Vertical SPACE

—"1 Wind
| Model T A Ee
U Gust Longitudinal

Figure 10.1 Longitudinal aircraft model with servo motor dynamics

10.2 Performance Criteria

The performance criteria are given in the time domain as well as the frequency
domain. Time responses to step disturbances or commands are compared against three

given transfer functions.

l. As a part of the performance criteria for this problem, a second-order model,

(s) 1=
T 2 as 1 4

Desired Model:
Bcmad

is given as the desired model from pitch command(8cmq) to theta (8). An upper
bound and lower bound dynamics are also given as second-order systems for the
performance measurement of the transient and steady-state tracking as well,

4
s2+28s+4"

1.96
s2 4+ 3.64s +1.96

Upper Bound:

Lower Bound:
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The corresponding unit step responses are shown in Figure 10.2.

The normal acceleration. the third output V., shall not exceed 0.4 g for a standard

(&)
.

pitch maneuver.

3. The frequency response of the open loop system shall not exceed 4 rad/second
crossover frequency. No high frequency signal is allowed in the system because
of consideration of energy consumption in the system and the mechanical linkage

from the elevator to the control column.

The performance criteria are listed in Table 10.2.

Table 10.2: Performance criteria

. . 1
Desired Dynamics pemwrpm
T : 4
Upper Dynamics 118071
: 1.96
Lower Dynamics 3611156

Normal Acceleration | n. < 0.4G

Crossover Frequency | w. < 4 rad/sec
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Longitudinal attitude control law dynamic thresholds



CHAPTER 11 NOMINAL PERFORMANCE

Before the design of the robust controller for the aircraft at different flight conditions
and with variations of weight and center of gravity location, we start with the H.
controller design for the nominal models. i.e.. models without variations. to study the

behavior of these nominal models at different conditions.

11.1 Model Matching

As stated in the objective of this project. the controlled system should behave simi-
larly to a second-order system. referred to as the desired model. This naturally gives rise
to H. model matching problem. The model matching problem is to find a controller
such that the difference of the closed-loop system from the desired system is minimized
in the H, norm. Let [lpys be the desired transfer function. H.4(A’) is the closed-
loop system determined by the designed controller A”. The model matching problem
is to design the controller A" such that ||Hpar — Hr¢([')|| is minimized. That means
the maximum magnitude of the transfer function Hpyr — Hr¢(A') is minimized in the
frequency domain. Usually. some weighting functions are incorporated to penalize the
minimization on certain frequency range of interest. For instance, the tracking perfor-
mance requires the difference of the two transfer functions is small in the low frequency
range. Therefore . we can use a low-pass weighting function, W,,(s), for this purpose.

Then the problem becomes minimizing the quantity of

W Woiow(Hpar — Hrg( V)] -
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11.1.1 Model Matching: Set-Up I

The set-up of the problem should be handled carefully. For example. a problem
set-up for model matching is shown in Figure 11.1. In this set-up, the controller (K)
takes the reference command "ref’ and the aircraft output measurements, pitch angle -6
and acceleration " Vz' as its inputs. Notice that the controller does not directly take the
tracking error as its input. Instead. the error through a low-pass filter W, is considered
as a performance measure. A controller designed in this way has two degrees of freedom

for the structure of the controller.

DM “—g) W, |-

!

“{'unl “éun.?

ref ‘—J

K Servo °
-l 17
L G
nom . Woce =
1 z
vaind
w2
dist
+
./
P de

Figure 11.1 Nominal set-up I: Model matching

A controller is synthesized using this set-up for the nominal model of middle-altitude
at medium weight and middle cg (case # 7). As one can see from the system responses
in Figure A.1 (Appendix A}, this design seems good in terms of system’s tracking to the
reference input and the crossover frequency. These criteria are easily achieved by the
designed controller. However. after careful inspection of the controller designed in this
way, one can find that the feedback part of this controller, I'2 and ('3, has a very small

gain and close to zero (see Figure A.l in Appendix A). The only part of this controller.
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which plays a role in controlling, is the feed-forward one, i.e.. from reference ref to
the control signal u. In fact. the obtained controller acts as an open-loop feedforward
controller instead of a feedback closed-loop controller. Though the requirements can be
achieved by this design for the specific model. it is not a good design. Some changes in
the nominal plant will result in bad responses because this design is not robust at all.

See Figure A.2 for an example in Appendix A.

11.1.2 A Modified Set-Up for Model Matching

The set-up in last section can become a useful one by adding two more weighting

functions Wy and W, into the set-up (see Figure 11.2). In this way. the performance

DM ~0O— We -
pert )
! ! b
Wdel wdeli V\(cunl ‘NcanZ
ref l L_]
K “O—- Servo 9
U [___|
! — Gnom N T - Wacc‘r"
, wl L | L | Nz , Em—
LA
_‘N\\‘ind |
w2
dist
+
S
A . WdlS fo—

Figure 1.2 Nominal set-up [: The modified model matching

evaluation includes not only the channel from reference ref to error W, but also the
channel from pert to error W,. The latter one ensures that the controller obtained will
not be of zero gain in the feedback path.

The performance measurements in this set-up include:



89

. The error between the output 6. the pitch angle, of the system and the desired
output from the desired model (DM). A low pass weight IV, (m) is chosen to

ensure the steady-state error to be satisfied. See the bode plot of W in Figure 11.3:

2. The normalized acceleration. Nz. A constant weight W,.. (0.001) is imposed on

Nz for the normal acceleration requirement;

3. The elevator deflection and the acceleration. Weights W, (0.1) and W2 (0.1)

are introduced to penalize the crossover frequency.

Phase (dog), Magntude (dB)

a0t 0.t 1

Fraquency (rad/sec)

Figure 11.3 The bode plot of weight W, for tracking error

The input dist is introduced as the measurement noise. The input pert and the
measure of output of controller u are introduced to ensure the problem is set-up properly
for the pu-synthesis.

Controllers are designed for the given nine different models (see [36]). Simulation
results are shown in Appendix B (see Figures B.1 - B.3) for models of medium weight

at middle cg of all three different flight altitudes.

1. Low-altitude/low-airspeed at medium weight and middle cg (Case # 1):
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2. Middle-altitude/high-airspeed at medium weight and middle cg (Case # 7):
3. High-altitude/high-airspeed at medium weight and middle cg (Case # 14).

As simulation results show. the feedback parts of the controllers designed in this way
are no longer zero controllers. The designed controller is evaluated for the corresponding

nominal model and the performance requirement can be met.

1. The 8 response falls in the envelope (dots) in the plot except for the initial stage:

(8]

. Elevator deflection in the transient is small (< 5 deg);

3. The crossover frequency of the open-loop system frequency response is less than

the 4 rad/sec restriction.

From the design experience of nominal models and simulation of the system. it is

clear that robust control design should be introduced to handle the model variation.

11.1.3 Discussion and Analysis

The system should be set up very carefully for the problem. The case of set-up [
should be avoided. Though the open-loop controller works well on the nominal model.
the controller is not a good one since the open-loop system is not robust at all. The
modified set-up avoids this problem because the performance of the transfer function
from pert to tracking error is also evaluated.

Notice that the feedback path from the third output V. to the control signal u has
a very small gain (see Figure A.3 in Appendix A). This feedback path does not play a
big role in system controlling. Therefore, the controller structure can be simplified by
dropping the N, feedback path, i.e., the controller only takes reference ref and system
output & as its inputs. Figure A.3 in Appendix A shows the bode plots of controllers
designed for case # 7 (middle altitude/airspeed at Mid/Mid) with and without .V. as

the feedback control signal.
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The order of the resulting controller depends on the order of the nominal system and
those weighting functions. The higher the order of those functions, the higher the order
of the controller obtained. For the modified model matching set-up discussed in last
section, one can get a controller with 10th order. Using Hankel norm model reduction.
one can reduce the controller to 6th order with acceptable performance (See Figure A.4

in Appendix A).

11.2 Desired Model as Prefilter

In the modified model matching set-up. as many as eight weighting functions are
involved. This makes the design procedure more complicated. Tuning any weight will
affect other performance. Besides. the more the weighting functions. the higher the
order of the obtained controller.

A simpler set-up of this problem is investigated. In this set-up, the desired model is
not taken into account for the design stage but will be used as a prefilter for the reference
command after the controller is obtained (see Figure 11.4). The tracking error can be

kept small if the open-loop gain is large at low frequency range.

Wr Wn =
ref
f\?e K Servo )
- u ’_“ Grom
wl
—
‘ Wivind
w2

Figure 11.4 Nominal set-up II: The desired model as a prefilter
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In this set-up, the controller (K) takes the tracking error (€) as its input. The number

of weighting functions drops down to two. The performance measurement includes:

1. The error between the output 8. the pitch angle, of the system and the reference

command. A low pass weight W ( 3-{-(+15) is chosen to ensure the steady-state error

to be satisfied. The bode plot of W, is shown in Figure 11.5;

2. The controller output u. A weight W, (:7) is introduced to penalize the crossover

frequency. The bode plot is shown in Figure 11.5.

The Bode Pict of Wr @ Wee 15) The Bade Plot of Wn = w(s+10)

g g |
3 ;>
H — |
i i
2

i o= i

“Taer ot

Frequency (rac/sec) Fraquency (rad/sec)

Figure 11.5 The bode plots of weights I, and ¥,

The bode plot of the integrator and servo model together is very close to | at the
middle frequency range (see Figure 11.6). Therefore. one can even take the integrator
and servo model aside at the design stage. and get a simpler system to design and obtain

a simpler controller.

Controllers are designed by using this simplified set-up. Simulation results are shown

in Appendix B (see Figure B.4 - B.6) for the same models as in set-up I:
1. Low-altitude/low-airspeed at medium weight and middle cg (Case # 1);

2. Middle-altitude/high-airspeed at medium weight and middle cg (Case # 7);
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Figure 11.6 The bode plot of Integrator and Servo

3. High-altitude/high-airspeed at medium weight and middle cg (Case # 14).

The resulting controller by this set-up has the order of 6 without model reduction.

All performance requirements are satisfied by the design.

11.3 Results

The design of controllers for the chosen nominal models is carried out based on
two different system set-ups described as above: the modified model matching and the
desired model as the prefilter set-up. From simulation results. it can be seen that the
designed controllers work very well for the corresponding nominal models for which they
are designed. However, these controllers are not robust and perform poorly against
other models under the same flight condition. In the following example. model # I
(low-altitude/low-airspeed at mid/mid) is chosen as the nominal model. The nominal
controller is synthesized by using the modified model matching and prefilter set-ups both.
As one can see from Figure 11.7, where the dot lines are the unit step responses of the

upper and lower bound systems. the response (solid) for the nominal model is fairly good.
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However. if the same controller designed for model #1 is applied to other two models. #
43 (dash) and # 57 (dash-dot), at the same flight condition (low-altitude/low-airspeed).
the system responses are not acceptable. For other flight conditions, the situation is
even worse. Systems may become unstable when the nominal controller is applied to
other models.

This is reasonable because the nominal synthesis does not take model variations into
account. The robustness can not be guaranteed by this synthesis. In the following
section. the robust control method will be address and the robust controller will be

designed against model variations.

T Conroller at : Low Albtucse (Mode! Matchng) T Conrofier ot MaNK): Low Alitude (Prefitarn
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Figure 11.7 Nominal controller: Performance for different models



CHAPTER 12 ROBUST PERFORMANCE

Three different flight conditions at different altitude/airspeed are considered. At each
flight condition, the robust controller is designed against the model variations of weight
and central of gravity. This will provide guidelines for selecting the initial scheduling

control law.

12.1 Parametric Variations of State-Space Model

Because the weight and center of gravity appear in the model as real scalars. varia-
tions are modeled as parametric uncertainty. Parameter variations consist of weight (in
forms of W and 1/W). center of gravity (X, ). and moment of inertia (1//,,).

The derivation of the closed-form framework for robustness analysis is given as follows
Ly using Linear Fraction Transformation (LFT). The purpose is to reconstruct the state-
space model such that those parameters are considered as uncertainty blocks in the
general robust problem set-up. Let p; denote one of the varying parameters described
above. A. B. C and D are the state-space matrices for the varying model. which is

linearized in p;. The varying linear model can be represented as the follows:

' ]
Al B Ao | Bo
C Co | Do
4, | B Ba
= |22 w W | +
Co | Do C'y | D, C, | D,
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As | Bs Ay | By
C3 D 3 C.{ D 4

Figure 12.1 shows the system variations in .4 matrix of the state-space model. As
one can see from the variable dependence table in Appendix C. most entries of A;, B;, C;

and D; are zeros.

A, {+)
4
A, N Y
A, “ W
23
A3 Xcg
Zy v,

Figure 12.1 System variations (.1 matrix)

In order to reduce the complicity of this model. those matrices each can be written
as the multiplication of two full rank matrices. For example. [4; B;] has rank 3 and can

be represented as follows.

0 0 o0 o0olo] [oo0o0
0 0 0 00|0 000-0a§20000-
[AiB] = | 0 a 0 0o0[0|=|100]|]|a, 0 0 0 0}0
al, 0 0 00/0 01 0f| 0 0 af 00/0]

| 0 0 a; 000 |00 1]
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Therefore. we can rewrite
I/V [.’1[ B[] = Fl(I’V[:;) [G1 Hl] .

Let F;.G; and H; be the corresponding resulting matrices for [4;, B;]. Similarly for

[C; Di]. let E; be the corresponding matrix similar to F;. Then. we have

I

I Ao | Bo F;
+Z E— Pi[G,’

H, |
y Co | Do i E;

u

The purpose to do this rearrangement is to pull out the varying parameters from the
system. To do this. we consider v; and =; to be the input and output respectively of
a linear time-invariant state-space model which has variation p; as the feedback block

(may be a matrix) as shown in Figure 12.2. The linear time-invariant model is given by

o

o

(_\I

To DT OW
cococomm
© oo o mm
© oo omm

e

Figure 12.2 An equivalent state-space representation
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In the following, we will use Linear Fraction Transformation to rewrite the structure

of the variation blocks. This may be done for various reasons:

l. To normalize the parameter variation:

8

. To express 1 /W in terms of §,;

[

. To express 1/I,, in terms of dy,,.

The parameter p; is considered as a variation around its nominal value p;; and the
variation is scaled to unity d; by the factor A;. Let p; = pi, + A;5;. where |&;] = 1.

[n our case. parameter variations appear both in the form of p; and 1/p;. As shown
in Figure 12.3, using Linear Fraction Transformation. we can express the parameter p;
and 1/p; in the form of unity parameter ¢;.

Figure 12.4 shows the overall rearrangement of the state-space model which combines
the above two steps.

[n this case. we need to rewrite our equations in terms of v’; and =’;. J:, denotes

the nmth block of the transfer matrix J* in Figure 12.3.
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Then the overall system is given as follows:

z \ r-‘10'*'2:;';1[’-'iJzizHi BO'*‘Z?:lFiJzizG'i FlJ’.le F2J221 E3ng F4J241 - ( z \
y Co Do E\ Ex Es Es ¢
= B J5Gy Ji H J 0 0 0 v’y
ol J3,G, JLH, 0 g2 0 0 ||vs
23 I3, G J3, Hs 0 0 J3 0 v's
=’y i J3Gy JHH, 0 0 0 JH ] vy )

The controller designed later using multiplicative uncertainty model will be evaluated
with this parametric model in the p-analysis. For the analysis purpose. the structure
singular value is computed. where the §,. uncertainty is treated as repeated 1 x | blocks

and ¢

zeg- 01,, @s complex scalars.

12.2 Plant Variation in Frequency Domain Set-Up

An alternative treatment of system uncertainty is the multiplicative model. In this

set-up. the uncertainty is treated as a multiplicative one. i.e..
Gi(s) = [[ + AWasa(s)] Gols). (12.1)

where G is the nominal model, Gis are all the possible models in the same flight
condition (altitude/airspeed). In the following design. the medium weight at middle cg
models, which are the middle plots (dash) in Figure 12.5, are chosen as the nominal
models Gy for each of three flight conditions.

The uncertainty A is set to have norm of 1. In this way, the corresponding magnitude

of weight on the uncertainty can be obtained by

Gi(jw) — Go(jw)l
Go(jw) .'

[Waaa(jw)] = max
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Figure 12.5 Bode plots of three models for three flight conditions

which is computed point by point in the frequency domain. Using “fitmag” routine in
MATLAB, one can choose the order of the fitting function for the magnitude data and
get a stable minimum phase transfer function from the obtained data. The following
weighting transfer functions are obtained for the three different flight conditions. See

Appendix D for bode plots.

1. Low altitude:

0.1713s% + 1.1877s” + 1.6825s* + 1.2084s% + 0.1471s? + 0.0444s + 0.0020
$6 4+ 2.447255 + 3.2401s* + 1.422453 + 0.224352 + 0.0606s + 0.0022




2. Middle altitude:

0.2786s° + 3.8195s° + 17.8112s* + 32.35625> + 1.2459s% + 0.1670s + 0.0038
s8 +2.6260s5 + 13.40421s* + 19.2241s% + 0.8423s2 + 0.2308s + 0.0042

3. High altitude:
0.9036s3 + 0.3521s% + 0.0241s + 0.0028
s3 4+ 0.2424s2 + 0.0180s + 0.0030

This uncertainty model is used in the following design set-up for robust synthesis.
The set-up for robust design follows the prefilter set-up discussed in the nominal

performance case (see Figure 12.6). As in the case of the nominal design, the gain of

the
!
W, W,
W A
ref e
L i? K Servo re
u FJ_“‘ Grom Q
- [¢]
wl
e Wing
w2

Figure 12.6 Set-up for robust synthesis: Multiplicative uncertainty

feedback control path for V., if it is considered as a feedback control signal. is very
small. Therefore. the set-up without .V, feedback is used later for robust synthesis. The

performance measurement includes:

1. The error between the output 6§, the pitch angle, of the system and the reference

command. A low pass weight W, (5_4-()3713) is chosen to ensure the steady-state error

to be satisfied;



103

2. The controller output u. A weight W, (7) is introduced to penalize the crossover

frequency:
3. The system output 8. The weight, W 44, for uncertainty is used.

Notice that the third model (Hvy/Fwd) at high altitude is relatively far away from
the other two models (see Figure 12.5). Therefore, the size of the system uncertainty is
relatively large in this case. As one can see from the simulation results (Figure 12.7). the
robust performance at high altitude is not as good as that at other two flight conditions.

The reason is that the open-loop system needs to have relatively large gain at low fre-
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Figure 12.7 Crossover vs. performance (high-altitude/high-airspeed)
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quency for the third model (Hvy/Fwd) in order to satisfy the tracking performance re-
quirement. However. for other two models. this will result in a larger crossover frequency
which exceeds the limit. See simulation results in Figure 12.7. The first two show the
designed controller meets the crossover frequency requirement for all models. but the
performance for the third model (Hvy/Fwd) is not as good as the second case. which
allows higher crossover frequency. Any improvement in the design for the third model
(Hvy/Fwd) will result in the increase of the crossover frequency. This design limitation
is because the third model is far away from the other two.

See Appendix E for all simulation results. Two singular value plots are shown for
each case. The left bottom one is the u plot for the multiplicative uncertainty model
(synthesis model). The right bottom one is for the parametric model with the same
controller designed using multiplicative model.

As one can see from the simulation result in Figure E.4 of Appendix E. the robust
controllers (higher than 10** order) can be reduced to 5* order controllers and can still

work fairly well.

12.3 Robust Design vs. Nominal Design

The robust stability and performance with variations of weight and center of gravity
can be achieved by robust controller design in the same flight condition. which is not
true for nominal controller design. The comparison of robust controller and nominal
controller is shown in Figure 12.8. For low-altitude/low-airspeed flight condition. plots
of system responses are shown for robust controller, nominal controller using modified
model matching set-up and controller using prefilter set-up respectively.

One can see that robust controller outperforms the nominal controller. For the
middle-altitude/high-airspeed case, systems even become unstable when the designed

nominal controller is applied to other two models in the same fAight condition.
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CHAPTER 13 CONCLUSIONS

The aircraft dynamics has been discussed. The nominal H.,, controller design is
addressed first. Two synthesis set-ups have been compared. For the model matching
approach. the problem needs to be set up properly to avoid obtaining an almost open-
loop controller.

Due to variations of weight and center of gravity in the aircraft model. robust con-
troller is needed to consider those variations. A multiplicative uncertainty model for
different flight conditions (three different altitudes/airspeeds) is derived for robust syn-
thesis. The robust controller is synthesized using MATLAB g toolbox for each flight
conditions. The resulting controller provides good robust performance against the sys-
tem variations. Future work need to be done on gain scheduling to handle the variation

due to different flight conditions.
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CHAPTER 14 GENERAL CONCLUSIONS

Two robustness issues have been addressed in this dissertation: robust steady-state
tracking for sampled-data systems and robust aircraft pitch control

Two different steady-state norms are defined as the robust performance measures for
steady-state tracking. Robust steady-state tracking problem is explored by first solving
robust steady-state tracking for periodic discrete-time systems. Then by using the lifting
technique for periodic systems and using an approximation approach. exact conditions
for sampled-data systems are found in the form of spectral radius of so-called steady-state
norm matrix. This nonnegative matrix is defined on the system induced norms and the
corresponding steady-state norms. A computation algorithm is given by a converging
approximation procedure. As one possible future work. the tools of £,/!; controller
design and robust steady-state tracking performance analysis can be combined as an
analysis and synthesis tool for the robust steady-state tracking problem. The robust
steady-state tracking conditions developed in this dissertation are given as the spectral
radius of certain nonnegative matrix, which consists of system induced norms. The
spectral radius of the nonnegative matrix is a monotonic function of the elements in the
matrix. These elements. induced norms and steady-state semi-norms. can be minimized
by the £,/l, controller design.

In the second part, aircraft models with parametric variations of weight and center
of gravity are discussed and used for robust analysis. A multiplicative uncertainty model
is derived and adopted as the synthesis set-up for the H.,, control design by using the

powerful MATLAB p-analysis and synthesis toolbox.
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In general, when considering a model matching problem, we should carefully set up
the problem, especially when all the zeros of the plant are stable zeros. For the nominal
set-up [ in Figure 11.1. the controller can simply designed as a open-loop compensator.
which consists of the desired model and the inverse of the plant. Though performance
criteria can be achieved by this design for the specific model, it is not a useful design.
Some changes in the nominal plant will result in bad responses because this design is
not robust at all.

As part of the design criteria. an elevator deflection limit of +/- 5 degrees is imposed
on the output of the actuator, and the normal acceleration, the third output .V.. shall
not exceed 0.4 G. These requirements can easily achieved. The output. V., as a feedback
measurement does not play an effective role in system controlling. Therefore. we do not
need take V. as the feedback measurement.

In each flight condition. aircraft is controlled by one robust controller. Gain schedul-
ing should be developed only for variations due to different flight conditions. For the
high altitude case. due to the system variations and performance criteria limitation. one
controller can not achieve the control task. In order to achieve better performance for
the third model (Hvy/Fwd), we need to make a large gain of the open-loop system at
low frequency. However, for other two models. this will results in a larger crossover
frequency which exceeds the limit. This is the tradeoff we have to deal with between

system performance and system crossover frequency.
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APPENDIX A SET-UP: DISCUSSION AND ANALYSIS
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Model matching [: Small controller in feedback path
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APPENDIX B NOMINAL PERFORMANCE

Modified model matching set-up: low-altitude/low-airspeed at Mid/Mid (#1)
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The state-space representation (A4, A'g. Ac. A'p) of the designed controller K at

Low Altitude/Airspeed (Mid/Mid #1):

Ky =

Columns 1 through 6

-4.4753e-01
-6.8797e-01

oo o o o o o©

o

-2.9494e+-03
-7.2595e+4-03

1.0000e+00
3.5887e-04
6.6729e-03
-3.9400e-03
2.9861e-02
0

0
3.2139e-05

Columns 7 through 10

-1.6253e+03
-3.9812e+03
0

0
-2.3172e-02
2.0715e-01
-9.2092e-01
0

0

0

1.0822e+-04
2.6503e+4-04
-7.7126e-19
1.5080e-17
1.6330e-16
-4.5247e-16
3.5291e-17
-3.8579%e-01
-1.4142e+00
8.4090e-01

-2.5804e+-06
-6.3212e+4-06
1.9232e-04
-4.1243e-05
-3.6926e+-01
2.6572e+00
-4.5622e+-01
0

0
-2.6992e-03

-1.9650e+-02
-4.8134e+02
7.7126e-19
-1.5080e-17
-1.6330e-16
4.5247e-16
-3.5291e-17
1.4142e+00
-3.4142e+00
-8.4090e-01

8.3018e+05
2.0334e+4-06
2.5723e-02
-2.1243e+00
-2.2556e+-00
1.0905e+01
-9.2047e+01
0

0
2.9922e+-00

1.5470e+-04
3.7894e+04
-6.9100e-07
2.2289%e-05
-1.8510e-06
-2.9498e-03
4.9745e-04
0

0
-3.4004e-02

3.0491e+05
7.4686e+4-05
0
1.0000e+-00
-6.0158e-01
-9.9291e+-00
6.0963e+01
0

0

0

4.6724e+4-02
1.1445e4-03
0

0
6.0802e-03
-7.1859e-03
-1.6270e-01
0

0

0
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Ag =
-4.3254e+00
3.3059e-02
-3.7993e-03
3.1375e-01
3.3315e-01
-3.0407e+00

o O O O O o o

1.3365e+01
-7.1160e+-00 0
-1.1160e+4-00 0

0 8.0205e+00
[\’C' =

Columns 1 through 6

-1.2954e-01 -8.5373e+02 -7.4690e+05 2.4029e+05 8.8257e+04 1.3525e+02
Columns 7 through 10

-4.7045e4+02  3.1324e+03 -5.6879e+01 4.4779e+03

Kp =

0 0
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Modified model matching set-up: middle-altitude/high-airspeed at Mid/Mid (#7)
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Figure B.2 Nominal case: Modified model matching (case #7)
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The state-space representation (A4, A'g. Ac. Ap) of the designed controller K at

Middle Altitude/Airspeed (Mid/Mid #7):

Ky =

Columns 1 through 6

-1.6727e-01
-1.4871e-03

o O o o o o o

0

-2.5407e+03
-6.2582e+03
1.0000e+-00
3.0360e-03
5.6994e-02
-5.7454e-03
5.9033e-01

0

0

6.9606e-06

Columns 7 through 10

-8.4720e+-00
-2.0752e+01
0

0
-9.2822e-02
4.0667e-02
-1.7426e+00

3.3016e+01
8.0871e+01

4.4704e-19
-1.2925e-17
-6.6294e-17
-2.2074e-16
-4.2864e-15

3.4090e-01

-2.0689e+04
-5.1303e+04
3.5692e-04
-1.5281e-04
-1.8081e+02
-1.9425e+400
-2.3218e+02
0

0

-5.2325e-03

-3.8808e+00
-9.5059e+00
-4.4704e-19

4.2864e-15
1.4142e+00
-3.4142e+00
-8.4090e-01

2.3807e+03
5.7586e+03
5.1374e-02
-3.7158e+-00
-6.9008e+-00
4.3171e+-00
-4.6677e+02
0

0

5.3547e-02

5.9351e+01
1.4539e+-02
-1.3395e-06

4.3586e-05

1.5461e-03
0

0
-5.9040e-04

3.7808e+02  6.0213e-01

9.2610e+02 1.4749e+00
0 0
1.0000e+00 0
-1.0736e+00  3.8751e-03
-2.2673e+00 -1.3574e-02
1.7403e+02 -9.3563e-02
0 0

0 0

0 0



Kg =

S O o o o o

-7.1160e+00

-7.1160e+00

[\’C =

0

-4.3325e+00
1.5076e-01
-1.5878e-03
5.4881e-01
1.0192e4-00
-2.0860e+00
6.8922e+-01
0

0

8.4545e+00

Columns | through 6

-4.8418e-02

-7.3542e+4-02

Columns 7 through 10

-2.4523e+00 9.5565e+00

KAp =

0

0
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-5.9885e+03

-1.1233e400

6.8061e+02

1.7180e+01

1.0944e+02

1.7429e-01
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Modified model matching set-up: high-altitude/high-airspeed at Mid/Mid (#14)
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Figure B.3 Nominal case: Modified model matching (case #14)
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The state-space representation (A4, A'g, Ac. Ap) of the designed controller K at

High Altitude/Airspeed (Mid/Mid #14):

K=

Columns 1 through 6

-1.6677e-01
-2.5463e-04
0

o o o

o

0

-1.2749e+-04
-3.1259e+-04
1.0013e+00
4.0256e-01
1.0627e+01
-1.4524e+00
9.4188e+01
0

0

7.7726e-05

Columns 7 through 10

-4.5674e+00
-1.1188e+01
0

0
-3.9996e-02
1.0575e-02
-1.3938e+00
0

0

0

2.7295e+01
6.6859e+01
-3.1855e-19
9.4752e-19
-1.6663e-17
-3.9145e-16
-1.5016e-15
-5.8579%e-01
-1.4142e+400
8.4090e-01

-1.2312e+05
-3.0221e+-05
3.8648e-04
-5.4833e-04
-1.3552e+-03
-3.9082e+-00
-1.7455e+4-02
0

0
-5.6894e-04

-4.5365e+-00
-1.1161e+01
3.1855e-19
-9.4752e-19
1.6663e-17
5.9145e-16
1.5016e-15
1.4142e4-00
-3.4142e+-00
-8.4090e-01

1.9308e+03
1.6525e+03
1.8435e-01
-1.6370e+01
-1.3289¢+02
5.7685e+01
-3.4951e+03
0

0
5.3929e-03

5.4370e+01
1.3318e+02
-1.4565e-07
4.3623e-05
-4.7922e-08
-2.1247e-02
1.7199e-03
0

0
-5.9442e-04

3.5925e+02
8.7998e+02
0
1.0000e+00
-6.9723e-01
-3.6938e+00
2.3114e+02
0

0

0

4.7815e-01
1.1712e400
0

0
4.4633e-03
-1.8661e-02
-1.1177e-01
0

0

0



[\—3 =

o O O o o o o

-7.1160e+00
-7.1160e+-00

0
Khe =

-4.3242e4-00
7.9960e-01
-2.7228e-02
2.4177e+4-00
1.9628e+-01
-9.9682e+-00
5.1619e+4-02
0

0
8.4616e+-00

Columns 1 through 6

-4.8273e-02

-3.6905e+03

Columns 7 through 10

-1.3220e+400
Kp =

0 0

1.9007e+0C

-3.5638e+04

-1.3189e+00

5.5042e+4-02

1.5738e+01

1.0399e+02

1.3840e-01
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Figure B.4 Nominal case: Prefilter set-up (case #1)
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The state-space representation (A4, A'g, Ac, Ap) of the designed controller K at

Low Altitude/Airspeed (Mid/Mid #1):

Ry =
0
-6.3101e+03
4.4425e+4-02
-71.7972e+03
0

1.0680e+06
[\'3 =

o O o o

4.7873e+00

0
[\VC =
4.4619e+04
[\'D =

0

1.0000e+00
-1.5442e+03
1.0111e+02
-1.8460e+-03
0
2.6126e+05

1.0915e+04

0
-1.0152e+-00
6.6284e-02
-1.4244e+00
0
1.7286e+02

7.2217e+00

0
4.4108e+00
-1.1181e-01
4.5569e+00

0

-7.5048e+-02

-3.1353e+01

0
9.8324e+-01
-1.0731e+00
1.2147e+02
-2.0000e-01
-1.6642e+04

-6.9526e+-02

0
1.0415e+01
-7.4925e-01
1.2867e+01

0

-1.7729e+03

-1.3648e+01



123

Prefilter Set-Up: middle-altitude/high-airspeed Mid/Mid (#7)
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The state-space representation (A'4, A'g, Ac. Ap) of the designed controller K at

hy=
0

-3.1948e+04
-3.5392e+02
-4.1021e+04

-2.8422¢-14

1.1044e+06
Ag =

0

0

0

7.1810e+-00

0
Ke =
4.6137e+04
Kp =

0

1.0000e+-00
-4.3631e+03
-4.9252e+4-01
-5.4268e+03
0
1.5079e+-05

6.2994e4-03

Middle Altitude/Airspeed (Mid/Mid #7):

0
-1.0197e+00
-2.4600e-02
-1.4079e+00
0
3.5383e+01

1.4782e+4-00

0
3.2349e+01
3.9011e-01
3.9913e+01
0
-1.1215e+03

-4.6851e+01

0
6.1935e+02
6.6712e+00
1.9526e+-02
-1.5000e-01

-2.1410e+04

-3.9444e+02

0
9.0668e+01
9.7661e-01
1.1642e+4-02
0
-3.1442e+03

-1.3094e+-02
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Prefilter Set-Up: high-altitude/high-airspeed Mid/Mid (#14)
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The state-space representation (A'y, A'g. A'c. A'p) of the designed controller K at

High Altitude/Airspeed (Mid/Mid #14):

hy=
0

-1.1391e4-04
-4.4119e+01
-1.5306e+03

0

5.4842e+04
[\-3 =

o o o

0
2.3937e+-00
0

[\.C =
2.2911e+03
hp =

0

1.0000e-+00
-1.3016e+03
-7.4478e+00
6.3707e+01
0
5.9997e+03

2.5065e+02

0
-2.0151e-01
-1.9256e-02
-1.3828e-01

0

9.4997e-01

3.9687e-02

-6.9226e-01

0
3.5329e+00
2.0943e-02
-9.3135e-01
0
-1.6570e+01

-1.7239e+02

0
8.9473e+-02
2.5819e+00
1.1516e+02
-1.0000e-01

-4.1265e+-03

0
1.1331e+402
3.2697e-01

1.4583e+401

o

-5.3258e+02

-2.1832e+01
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APPENDIX C VARIABLE DEPENDENCE TABLES

Table C.1: The variable dependence of matrices 4 and B

1 2 3 1 51 B 1 2 3
- . - - S | - - -

o Xeg ULy | Xego Yy | Xego WDy | - | 2 | Xego U Ty | Xego 1/ Dyy | Xego 1/ 1y
S wyw | wyw | wyw |- 3] yw /W /W
wl W /W yw |-+ yw /W /W

- - W - -5 - - -

Table C.2: The variable dependence of matrices C' and D

Cl1{2 (3|4 |5|Dj1}2}{3
Ly - - 11 -i-U0ty-1-1-
20 - | - -1 -1-ft27-1-1-
3{w - -1 -1-131-1-1-
Al - Iwl-t-1-4]-1-]-
51 - - -y Wi-5]-1{-1W
6-1-1]-1-1-Il6|-{-]-
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APPENDIX D PLOTS OF WEIGHTING FUNCTIONS
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Figure D.1 Weights for multiplicative uncertainty (three flight conditions)
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Multiplicative Uncertainty: System Responses and p Analysis (Low Altitude)
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The state-space representation (A's, A'g, Ac. Ap) of the designed robust controller
K at Low Altitude/Airspeed:
Ky =

Columns | through 6

-1.5256e+02
2.3028e-01

-2.8138e-01

-2.7373e-03
4.7010e-02
-3.7797e-26
-3.8643e+00
7.3319e-33
4.9347e-33
-6.0118e-32
-1.8251e-31
-2.1625e-31
2.2368e-31
-5.3087e-18
-6.9464e-18

-8.5426e-19

-2.3028e-01
-1.1105€-02
2.1271e-01
-1.4526e-37
-1.4475e-01
1.0413€-02
-1.7883e-01
-2.3306e-29
1.4700e+01
5.4908e-36
3.6956e-36
-4.5022e-35
-1.3668e-34
-1.6195e-34
1.6751e-34
-3.9756e-21

.2021e-2

—

(1]

-6.3975e-22

-2.8138e-01
-2.1271e-01
-1.9604e-02
-1.8007e-37
-4.2820e-01

3.0804e-02
-5.2901e-01
-3.5091e-29
4.3486e+4-01

6.3068e-36

4.5814e-36
-5.5813e-35
-1.6944e-34
-2.0076e-34

2.0766e-34
-4.9285e-21
-6.4490e-21
-7.9309e-22

-1.6813e+03
1.2591e4-00
-1.5609e+-00
4.4958e-22
-3.1211e+03
2.1484e+4-02
-3.8575e+03
0
3.1696e+05
1.6530e+-00

1.7778e+01
-4.5347e+01
-1.6189e+-01

-3.2403e+00

-1.0919e+01

-7.5079e+00

-2.0630e-01
4.9271e-01

0
0
1.0000e+00

-3.4116e+02

1.4570e+01

-3.5977e+02

0

3.4585e+04

o O O o o o o o o

0
0
0
0
-4.5884e-02

-3.4477e-03

-2.2690e-01

o O O o o o o o o



Columns 7 through 12

0
0
0
0
2.3227e-01

1.8878e-01

(09
[v0]

-6.0533e-01
0
-2.5942e+01

0
0
0
0
0
0
0
0
0

5.8359e-23
-7.3464e-26
1.4230e-27
1.9965e-36
5.4616e+00
-3.9289e-01
6.7474e+00
-2.0000e-01

-3.5465e+02

-2.6916e-34
8.6241e-34
-4.1427e-33
-1.6676e-33
9.1362e-34
-7.6273e-33
-3.5386e-18
-4.4899e-18
1.1371e-18

0

0

5.0538e-01
-3.6355e-02
6.2436e-01

0
-5.7324e+01
0

0

0

o O o o o o

4.9431e+00
-3.7019e-03
4.5891e-03
6.3934e-36
-1.6129e-01
1.1603e-02
-1.9926e-01
1.2459e-27
1.6380e+01
-4.5432e-04
-2.3173e-01
3.8001e-02
9.8310e-03
1.8491e-03
5.8715e-03

1.7499e-19

-5.3162e+01
3.9813e-02
-4.9355¢-02
-6.8759e-35
1.7443e+-00
-1.2548e-01
2.1549e+00
-1.3399e-26
-1.7714e+02
2.3173e-01
-3.4863e-02
2.0592e-01
9.0920e-02
1.9261e-02
6.8997e-02
-1.8819e-18
-2.4625e-18

-3.0284e-19

1.3560e4-02
-1.0155e-01
1.258%-01
1.7539%e-34

-1.2571e+00

9.0429e-02

-1.5530e4-00

3.4178e-26
1.2766e+02
-3.8001e-02
2.0592e-01
-9.9373e-01
-3.5625e-01
-1.2832e-01
-5.1166e-01
4.8004e-18
6.2813e-18

1.7247e-19



Columns 13 through 18

4.8412e+01
-3.6255e-02
4.4945e-02
6.2615e-35
2.6995e-01
-1.9420e-02
3.3351e-01
1.2202e-26
-2.7415e+01
-9.8310e-03
9.0920e-02
-5.5625e-01
-4.5960e-01
-1.3262e-01
-8.1008e-01
1.7138e-18
2.2425e-18

2.7578e-19

9.6893e-+00
-7.2567e-03
8.9959¢-03
1.2533e-35
5.9983e-02
-4.3150e-03
7.4105¢-02
2.4423e-27
-6.0916e+00
-1.8491e-03
1.9261e-02
-1.2832e-01
-1.3262e-01
-4.7544e-02
-8.1311e-01
3.4302e-19
4.4834e-19

5.5198e-20

133

-3.2653e+01
2.4453e-02
-3.0314e-02
-4.2233e-35
-7.0178e-01
5.0485e-02
-8.6701e-01

3.1166e-01
8.1008e-01
8.1311e-01
-8.9101e-01
-1.1559%-18
-1.5125e-18

-1.8601e-19

8.4686e-19
5.3149e-16
-3.7203e-16
6.8679e-24
-3.6240e+-01
2.6070e+-00
-4.4773e+01
-7.1054e-15
3.6804e+-03
-1.0975e-21
3.6469e-21
-1.7695e-20

.S455e-21

=1
[V

o

563e-21

N
[v7)

t

-3.1081e-20
-2.7104e+-00
1.1482e-01

-1.3463e-01

6.3421e-22
3.9803e-19
-2.7861e-19
5.1433e-27
6.9586e-01
-5.0058e-02
8.5969e-01
0
7.0668e+-01

-8.2193e-25
2.7311e-24
-1.3252e-23
-5.8755e-24
2.1391e-24
-2.3277e-23
-1.1805e-01
-1.1192e-02
2.1282e-01

7.8621e-22
4.9343e-19
-3.4539%e-19
6.3761e-27
1.0490e+-00
-1.5465e-02
1.2960e+-00
0
-1.0654e4-02

-1.0189e-24

-2.8855e-23
-1.4226e-01
-2.1281e-01

-1.9468e-02



Kg =
7.5219e-18
4.7208e-15
-3.3045e-15
6.1002e-23
-2.7756e-22
6.1964e-22
-5.6085e-21

3.1097e+402
0
-9.7485e-21
3.2392e-20
-1.5717e-19
-6.9686e-20
2.5370e-20

(]
[o]]

-2.7607e-19
-1.0187e+00
-2.7992e-02

6.6853e-02

134



he =

Columns 1 through 6

-8.2845e-02  3.1515e-01 9.3227e-01 6.7952e+03 7.4146e+02 1.1314e-01
Columns 7 through 12

-5.5615e-01 -1.1891e+01 -1.1003e4+00 3.5116e-01 -3.7976e+00 2.7368e+00
Columns 13 through 18

-5.8773e-01  -1.3059e-01 1.5279e+00 7.8902e+01 -1.5150e+00 -2.2839e+00
Ap =

0
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Multiplicative Uncertainty: System Responses and u Analysis (High Altitude)
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The state-space representation (A4, A'g, Ac. A'p) of the designed robust controller

K at High Altitude/Airspeed:

Ry=

Columns | through 6

-1.8847e+02
3.0412e-01
2.2977e+00
2.6647e-21
6.8035e+-00
1.9633e-02
8.7566e-01
3.1959e-21
-1.5689e+4-00
-1.3839%-21
1.3726e-20
1.8876e-21
6.9622e-19
-9.9383e-20
1.0609e-18

-3.0412e-01
-8.5296e-04
-1.0788e-01

1.9068e-24
-3.6787e-03
-1.0616e-05
-4.7343e-04
.2869e-24

o

8.4833e-04
-9.9028e-25
9.8217e-24
1.3507e-24
4.9819e-22
-7.1115e-23

1.5916e-22

-8.7313e-02
-1.7810e-23
-4.7683e-01
-1.3760e-03
-6.1371e-02
-2.1360e-23

1.0996e-01

9.2498e-24
-9.1740e-23
-1.2616e-23
-4.6534e-21

6.6425e-22

-7.0910e-21

2.3200e+03
-1.6601e+-00
-1.5506e+-01
-9.5412e-19
-3.6566e+02
-1.1438e+01
-1.295%+01
0
1.3044e+02
-3.2629e+00
-1.5649e+01
-1.4235e+01
8.1995e+-01
-9.1899%-02
4.9052e4-00

0

0
1.0000e+00
-3.3309e+01
-3.7880e+00
2.2694e+-02
0

v
(V]

7.5203e+00

0
0
0
0

-1.5562e-05
-1.8674e-02
-1.1235e-01
0
1.0328e-03

[e]



Columns 7 through 12

0

0

0

0
-1.6419e-04
1.0748e-02
-1.3861e+00
0
-1.3797e-02

0
0
0
0

0
0

3.3528e-24
-1.1098e-24
2.6698e-25
-3.8113e-27
4.7677e+00
1.3758e-02
6.1363e-01
-2.0000e-01

-1.0994e+-00

-3.1268e-28
-2.1801e-138
-1.1027e-17

-1.7493e-17

0
0
0
0

9.3602e-04
2.7011e-06
1.2047e-04

0
-1.0002e+-00
0

o

2.5519e+00
-1.8260e-03
-1.7056e-02
-4.0406e-23
-7.9783e-02
-2.3023e-04
-1.0269e-02
-4.8459e-23

1.8398e-02
-9.2097e-04
-1.1888e-01
-8.7365e-03
-1.0557e-20

1.5069e-21

-1.6087e-20

-1.2239%e+01
8.7579e-03
3.1804e-02
1.9379e-22

7.1290e-03

-1.1133e+01
7.9666e-03
7.4412e-02
1.7628e-22
2.3623e-01
6.3169e-04
3.0405e-02
2.1142e-22

-5.4475€-02
8.7363e-03
-3.3316e-02
-2.1859€-01
1.6057e-20
-6.5744e-21

7.0183e-20



Columns 13 through 15

6.0462e-17
-6.5134e-14
-7.4086e-15
6.0134e-20
6.3355e+00
1.9725e-02

-1.5763e+4-00
5.7887e-21
-2.3063e-19

-3.7341e-20

8.5135e-01

4.3264e-20
-4.6607e-17
-5.3013e-18
4.3030e-23
-2.3434e-01
-6.7622e-04
-3.0161e-02
0
5.4038e-02
4.1422e-24
-1.6503e-22
-1.1031e-23
-1.8754e-01
-9.3483e-04
-1.0892e-01

139

-4.0411e-19
4.3534e-16
4.9517e-17

-4.0192e-22

2.2669e+00
6.5417e-03
2.9177e-01
2.7756e-17

-3.2276e-01

-3.8690e-23
1.5414e-21

1.0865e-01
-7.7646e-02
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Ag =

-1.4704e-16
1.5841e-13
1.8018e-14
-1.4625e-19
4.3168e-19
-7.8287e-19
4.0137e-17
7.3071e+01
0
-1.4078e-20
5.6088e-19
1.3945e-19
1.3071e+-01
-1.4650e-02

7.8198e-01
Re =

Columuns 1 through 6

-3.4354e-01 1.8575e-04 2.4077e-02 2.8563e+01 1.6467e+00 2.2615e-04
Columns 7 through 12

-3.0211e-03 -2.4074e-01 -4.7263e-05 4.0286e-03 -3.5997e-04 -1.1928e-02
Columns 13 through 15

-3.4515e-01 1.1833e-02 -1.1447e-01

Ap =

0
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Multiplicative Uncertainty: System Responses and p Analysis (Middle Altitude)
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The state-space representation (A4, A'g

K at Middle Altitude/Airspeed:

[\’A =

Columns 1 through 6

-1.3440e-02
7.7249e-02
0
-2.1096e-02
-2.2723e-04
-2.7088e-02
5.2191e-37

7.2925e-03

o o o o o o

5.1003e-18

-3.5587e-19

-7.7249e-02

-1.0437e-02

3.9477e-37
-7.1293e-03
0

o o o o

0
3.857%-18

-7.2303e-19

-3.5857e+00
2.7123e+00
0
-1.7052e+02
-1.1643e+01
-2.1908e+02
-1.4211e-14
5.8946e+01
9.3630e+00
2.5314e+401
1.0464e+02
-5.4717e+01
3.4403e+01
-2.1087e+0!
-3.7704e+00

5.7906e+00

0

0
1.0000e+-00
-1.7613e+01
-2.4455e+00
1.5279e+-02
0
5.7191e+00

o O o o o o o

0

0
-9.7767e-05
-1.3617e-02
-9.8664e-02
0
1.3733e-03

o O © o o o o o

. K¢, Kp) of the designed robust controller

0

0
-2.6352e-03
4.1638e-02
-1.6268e+00
0
-3.1176e-02
0



Columns 7 through 12

-6.9340e-36
2.1271e-36
0
2.7762e+00
2.9903e-02
3.5647e+-00
-1.0000e-01
-9.5969e-01

o O o o o o

2.5398e-1

(0]

-3.6331e-18

-1.8979e-02
-2.0443e-04
-2.4369e-02

0
-9.9344e-01

o O O o o o o o©
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-2.2632e-01

-2.4378e-03

-3.4938e-03
-1.3441e-01

-1.5838e-01

o

2.9773e-0
-2.7097e-02
1.6301e-02
3.6969e-18
-6.9284e-19

-9.9262e-02
7.5083e-02
0
-3.4096e-01
-3.6726e-03
-4.3780e-01
-1.0228e-36
1.1786e-01
1.3441e-01
-2.9714e-02

-1.5452e-01

IS

[
>

t

627e-0

—

=1
(=23
o

118e-0:
4.7590e-02
-9.9949e-18
1.8732e-18

-4.1032e-01
3.1037e-01

0
-4.5985e+00
-4.9532e-02
-5.9045e+00
~4.2278e-36
1.5896e+00
1.5838e-01
-1.5452e-01
-8.6086e-01
3.3709e+00
-5.1294e-01
3.2479e-01
-4.1316e-17

7.7433e-18

-2.1456e-01
1.6229e-01
0
-1.3015e-01
-1.3646e-03
-9.3752e-01
-2.2107e-36
2.5240e-01

2.9773e-02

(V]
Na}

-3.3709e+00
-3.2115e-01
4.7028e-01
-2.7295e-01
-2.1604e-17

4.0439%e-13



Columns 13 through 16

-1.3490e-01
1.0204e-01
0
-2.7146e-01
-2.9240e-03
-3.4856e-01
-1.3900e-36
9.3838e-02
2.7097e-02
-7.6118e-02
-5.1294e-01
-4.7028e-01
-8.9865e-01
6.6396e-01
-1.3584e-17

2.5458e-18

-1.6301e-02
4.7590e-02
3.2479e-01
2.7295¢-01
6.6396e-01

-5.1216e-01
8.3260e-18

-1.5604e-18

144

-5.1220e-29
1.5712e-29
0
1.4312e+00
1.5416e-02
1.8377e+00
0
-4.9475e-01

-3.8743e-29
1.1885e-29
0
8.7884e-01
9.4663e-03
1.1284e+00
0
-3.0380e-01

o o o o o

-1.0434e-01
1.3089e-03



o O o o

6.6222e+00

o O o o o o o©

-2.1789e-01

3.3464e-01
Ae =

Columns 1 through 6

2.2024e-02  -2.1532e-02 1.7802e+02 1.7273e+01 4.1477e-03 -9.4155e-02
Columns 7 through 12

-2.8984e+00 1.9814e-02 2.3628e-01 3.5596e-01 4.8009e+00 7.6228e-01
Columns 13 through 16

2.8341e-01 -2.7008e-01 -1.4942e+00 -9.1752e-01

Ap =

0
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Multiplicative Uncertainty: System Responses and g Analysis (Middle Altitude with

Reduced Controller 5*)
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Figure E.4 Reduced robust controller (5**): Middle-altitude/high-airspeed
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The state-space representation (A'y. A'g, Ac. A'p) of the reduced robust controller k
(5th order) at Middle Altitude/Airspeed:

[\-_4 =

-3.9403e-01  1.374le40l  1.3963e+00 5.5390e-01  1.6410e-01
-9.6335e+00 -1.0473e+01 -6.5654e+00 -2.5424e4+00 -8.5174e-01

0 0 -1.0571e+00 -7.8689e-01 -2.5107e-01
0 0 0 -1.4247e-01 -9.6089e-02
0 0 0 0 -1.8328e-02

Kg =
-5.8067e-01
3.5659e+-00

8.8631e-01
3.6106e-01

2.1136e-01
[\'C' =

5.5692e-01 -3.5740e+00 -8.8366e-01 -2.7071e-01 -1.8505e-01
1\-D =

-9.2521e-02
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